Research article Special Issues

On the character sums analogous to high dimensional Kloosterman sums

  • Received: 11 July 2021 Accepted: 16 September 2021 Published: 12 October 2021
  • MSC : 11L03, 11L05, 11L40

  • The main purpose of this paper is using the properties of the classical Gauss sums and the analytic methods to study the computational problem of one kind of character sums analogous to high dimensional Kloosterman sums, and give some interesting identities for it.

    Citation: Jianghua Li, Xi Zhang. On the character sums analogous to high dimensional Kloosterman sums[J]. AIMS Mathematics, 2022, 7(1): 294-305. doi: 10.3934/math.2022020

    Related Papers:

  • The main purpose of this paper is using the properties of the classical Gauss sums and the analytic methods to study the computational problem of one kind of character sums analogous to high dimensional Kloosterman sums, and give some interesting identities for it.



    加载中


    [1] R. A. Smith, On $n$-dimensional Kloosterman sums, J. Number Theory, 11 (1979), 324–343. doi: 10.1016/0022-314X(79)90006-4. doi: 10.1016/0022-314X(79)90006-4
    [2] W. P. Zhang, D. Han, A new identity involving the classical Kloosterman sums and $2$-dimensional Kloostermann sums, Int. J. Number Theory, 12 (2016), 111–119. doi: 10.1142/S179304211650007X. doi: 10.1142/S179304211650007X
    [3] W. P. Zhang, X. X. Li, The fourth power mean of the general $2$-dimensional Kloostermann sums $\bmod p$, Acta Math. Sin. English Ser., 33 (2017), 861–867. doi: 10.1007/s10114-016-6347-9. doi: 10.1007/s10114-016-6347-9
    [4] X. X. Lv, W. P. Zhang, On the character sum of polynomials and the two-term exponential sums, Acta Math. Sin. English Ser., 36 (2020), 196–206. doi: 10.1007/s10114-020-9255-y. doi: 10.1007/s10114-020-9255-y
    [5] X. L. Xu, J. F. Zhang, W. P. Zhang, The character sum of polynomials with $k$ variables and two-term exponential sums, Notes Number Theory, 27 (2021), 112–124. doi: 10.7546/nntdm.2021.27.1.112-124. doi: 10.7546/nntdm.2021.27.1.112-124
    [6] S. Chern, On the power mean of a sum analogous to the Kloosterman sum, 2017, arXiv: 1712.01422.
    [7] W. P. Zhang, On the fourth and sixth power mean of the classical Kloosterman sums, J. Number Theory, 131 (2011), 228–238. doi: 10.1016/j.jnt.2010.08.008. doi: 10.1016/j.jnt.2010.08.008
    [8] W. P. Zhang, X. X. Lv, The fourth power mean of the general $3$-dimensional Kloostermann sums $\bmod p$, Acta Math. Sin. English Ser., 33 (2017), 369–377. doi: 10.1007/s10114-016-6347-9. doi: 10.1007/s10114-016-6347-9
    [9] W. P. Zhang, On the fourth power mean of the general Kloosterman sums, J. Number Theory, 169 (2016), 315–326. doi: 10.1016/j.jnt.2016.05.018. doi: 10.1016/j.jnt.2016.05.018
    [10] W. P. Zhang, S. M. Shen, A note on the fourth power mean of the generalized Kloosterman sums, J. Number Theory, 174 (2017), 419–426. doi: 10.1016/j.jnt.2016.11.020. doi: 10.1016/j.jnt.2016.11.020
    [11] W. Duke, H. Iwaniec, A relation between cubic exponential and Kloosterman sums, Contemp. Math., 145 (1993), 255–258.
    [12] Y. W. Hou, W. P. Zhang, One kind high dimensional Kloosterman sums and its upper bound estimate, Journal of Shaanxi Normal University (Natural Science Edition), 46 (2018), 28–31.
    [13] T. M. Apostol, Introduction to analytic number theory, Springer Science & Business Media, 1976.
    [14] J. Greene, D. Stanton, The triplication formula for Gauss sums, Aeq. Math., 30 (1986), 134–141. doi: 10.1007/BF02189920. doi: 10.1007/BF02189920
    [15] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. doi: 10.1016/0022-314X(77)90010-5. doi: 10.1016/0022-314X(77)90010-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2155) PDF downloads(94) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog