The main purpose of this paper is using the properties of the classical Gauss sums and the analytic methods to study the computational problem of one kind of character sums analogous to high dimensional Kloosterman sums, and give some interesting identities for it.
Citation: Jianghua Li, Xi Zhang. On the character sums analogous to high dimensional Kloosterman sums[J]. AIMS Mathematics, 2022, 7(1): 294-305. doi: 10.3934/math.2022020
The main purpose of this paper is using the properties of the classical Gauss sums and the analytic methods to study the computational problem of one kind of character sums analogous to high dimensional Kloosterman sums, and give some interesting identities for it.
[1] | R. A. Smith, On $n$-dimensional Kloosterman sums, J. Number Theory, 11 (1979), 324–343. doi: 10.1016/0022-314X(79)90006-4. doi: 10.1016/0022-314X(79)90006-4 |
[2] | W. P. Zhang, D. Han, A new identity involving the classical Kloosterman sums and $2$-dimensional Kloostermann sums, Int. J. Number Theory, 12 (2016), 111–119. doi: 10.1142/S179304211650007X. doi: 10.1142/S179304211650007X |
[3] | W. P. Zhang, X. X. Li, The fourth power mean of the general $2$-dimensional Kloostermann sums $\bmod p$, Acta Math. Sin. English Ser., 33 (2017), 861–867. doi: 10.1007/s10114-016-6347-9. doi: 10.1007/s10114-016-6347-9 |
[4] | X. X. Lv, W. P. Zhang, On the character sum of polynomials and the two-term exponential sums, Acta Math. Sin. English Ser., 36 (2020), 196–206. doi: 10.1007/s10114-020-9255-y. doi: 10.1007/s10114-020-9255-y |
[5] | X. L. Xu, J. F. Zhang, W. P. Zhang, The character sum of polynomials with $k$ variables and two-term exponential sums, Notes Number Theory, 27 (2021), 112–124. doi: 10.7546/nntdm.2021.27.1.112-124. doi: 10.7546/nntdm.2021.27.1.112-124 |
[6] | S. Chern, On the power mean of a sum analogous to the Kloosterman sum, 2017, arXiv: 1712.01422. |
[7] | W. P. Zhang, On the fourth and sixth power mean of the classical Kloosterman sums, J. Number Theory, 131 (2011), 228–238. doi: 10.1016/j.jnt.2010.08.008. doi: 10.1016/j.jnt.2010.08.008 |
[8] | W. P. Zhang, X. X. Lv, The fourth power mean of the general $3$-dimensional Kloostermann sums $\bmod p$, Acta Math. Sin. English Ser., 33 (2017), 369–377. doi: 10.1007/s10114-016-6347-9. doi: 10.1007/s10114-016-6347-9 |
[9] | W. P. Zhang, On the fourth power mean of the general Kloosterman sums, J. Number Theory, 169 (2016), 315–326. doi: 10.1016/j.jnt.2016.05.018. doi: 10.1016/j.jnt.2016.05.018 |
[10] | W. P. Zhang, S. M. Shen, A note on the fourth power mean of the generalized Kloosterman sums, J. Number Theory, 174 (2017), 419–426. doi: 10.1016/j.jnt.2016.11.020. doi: 10.1016/j.jnt.2016.11.020 |
[11] | W. Duke, H. Iwaniec, A relation between cubic exponential and Kloosterman sums, Contemp. Math., 145 (1993), 255–258. |
[12] | Y. W. Hou, W. P. Zhang, One kind high dimensional Kloosterman sums and its upper bound estimate, Journal of Shaanxi Normal University (Natural Science Edition), 46 (2018), 28–31. |
[13] | T. M. Apostol, Introduction to analytic number theory, Springer Science & Business Media, 1976. |
[14] | J. Greene, D. Stanton, The triplication formula for Gauss sums, Aeq. Math., 30 (1986), 134–141. doi: 10.1007/BF02189920. doi: 10.1007/BF02189920 |
[15] | S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. doi: 10.1016/0022-314X(77)90010-5. doi: 10.1016/0022-314X(77)90010-5 |