Research article

The spectral collocation method for solving a fractional integro-differential equation

  • Received: 07 September 2021 Revised: 26 February 2022 Accepted: 07 March 2022 Published: 14 March 2022
  • MSC : 26A33, 65M15, 65M70

  • In this paper, we propose a high-precision numerical algorithm for a fractional integro-differential equation based on the shifted Legendre polynomials and the idea of Gauss-Legendre quadrature rule and spectral collocation method. The error analysis of this method is also given in detail. Some numerical examples are give to illustrate the exponential convergence of our method.

    Citation: Chuanhua Wu, Ziqiang Wang. The spectral collocation method for solving a fractional integro-differential equation[J]. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532

    Related Papers:

  • In this paper, we propose a high-precision numerical algorithm for a fractional integro-differential equation based on the shifted Legendre polynomials and the idea of Gauss-Legendre quadrature rule and spectral collocation method. The error analysis of this method is also given in detail. Some numerical examples are give to illustrate the exponential convergence of our method.



    加载中


    [1] F. Hu, W. Zhu, L. Chen, Stochastic fractional optimal control of quasi-integrable Hamiltonian system with fractional derivative damping, Nonlinear Dynam., 70 (2012), 1459–1472. https://doi.org/10.1007/s11071-012-0547-3 doi: 10.1007/s11071-012-0547-3
    [2] M. Ezzat, A. Sabbah, A. El-Bary, S. Ezzat, Thermoelectric viscoelastic fluid with fractional integral and derivative heat transfer, Adv. Appl. Math. Mech., 7 (2015), 528–548. https://doi.org/10.4208/aamm.2013.m333 doi: 10.4208/aamm.2013.m333
    [3] Y. Povstenko, Nonaxisymmetric solutions of the time-fractional heat conduction equation in a half-space in cylindrical coordinates, J. Math. Sci., 183 (2012), 252–260. https://doi.org/10.1007/s10958-012-0811-6 doi: 10.1007/s10958-012-0811-6
    [4] M. Ortigueira, C. Ionescu, J. Machado, J. Trujillo, Fractional signal processing and applications, Signal Process., 107 (2015), 197. https://doi.org/10.1016/j.sigpro.2014.10.002 doi: 10.1016/j.sigpro.2014.10.002
    [5] T. Chow, Fractional dynamics of interfaces between soft-nanoparticles and rough substrates, Phys. Lett. A, 342 (2005), 148–155. https://doi.org/10.1016/j.physleta.2005.05.045 doi: 10.1016/j.physleta.2005.05.045
    [6] M. Gandomani, M. Kajani, Numerical solution of a fractional order model of HIV infection of CD4 + T cells using Muntz-Legendre polynomials, Int. J. Bioautom., 20 (2016), 193–204.
    [7] M. Ghasemi, M. Kajani, E. Babolian, Numerical solutions of the nonlinear integro-differential equations: Wavelet-Galerkin method and homotopy perturbation method, Appl. Math. Comput., 188 (2007), 450–455. https://doi.org/10.1016/j.amc.2006.10.001 doi: 10.1016/j.amc.2006.10.001
    [8] M. Kajani, A. Vencheh, Solving linear integro-differential equation with Legendre wavelets, Int. J. Comput. Math., 81 (2004), 719–726. https://doi.org/10.1080/00207160310001650044 doi: 10.1080/00207160310001650044
    [9] A.Kiliçman, I. Hashim, M Kajani, M. Maleki, On the rational second kind Chebyshev pseudospectral method for the solution of the Thomas-Fermi equation over an infinite interval, J. Comput. Appl. Math., 257 (2014), 79–85. https://doi.org/10.1016/j.cam.2013.07.050 doi: 10.1016/j.cam.2013.07.050
    [10] R. Yan, Y. Sun, Q. Ma, X. Ding, An hp-version spectral collocation method for multi-term nonlinear fractional initial value problems with variable-order fractional derivatives, Int. J. Comput. Appl. Math., 98 (2021), 975–998. https://doi.org/10.1080/00207160.2020.1796985 doi: 10.1080/00207160.2020.1796985
    [11] E. Hesameddini, M. Shahbazi, Numerical solution of linear Fredholm integral equations using sine-cosine wavelets, Int. J. Comput. Appl. Math., 84 (2007), 979–987. https://doi.org/10.1080/00207160701242300 doi: 10.1080/00207160701242300
    [12] J. Singh, A. Gupta, D. Baleanu, On the analysis of an analytical approach for fractional Caudrey-Dodd-Gibbon equations, Alex. Eng. J., 61 (2022), 5073–5082. https://doi.org/10.1016/j.aej.2021.09.053 doi: 10.1016/j.aej.2021.09.053
    [13] V. Dubey, J. Singh, A. Alshehri, S. Dubey, D. Kumar, An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations, Math. Comput. Simulat., 196 (2022), 296–318. https://doi.org/10.1016/j.matcom.2022.01.012 doi: 10.1016/j.matcom.2022.01.012
    [14] E. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., 176 (2006), 1–6. https://doi.org/10.1016/j.amc.2005.09.059 doi: 10.1016/j.amc.2005.09.059
    [15] P. Das, S. Rana, H. Ramos, A perturbation-based approach for solving fractional-order Volterra-Fredholm integro differential equations and its convergence analysis, Int. J. Comput. Math., 97 (2020), 1994–2014. https://doi.org/10.1080/00207160.2019.1673892 doi: 10.1080/00207160.2019.1673892
    [16] H. Dehestani, Y. Ordokhani, M. Razzaghi, Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations, Appl. Math. Comput., 336 (2018), 433–453. https://doi.org/10.1016/j.amc.2018.05.017 doi: 10.1016/j.amc.2018.05.017
    [17] Q. Xu, Z. Zheng, Spectral collocation method for fractional differential integral equations with generalized fractional operator, Int. J. Differ. Equ., 2019 (2019), 3734617. https://doi.org/10.1155/2019/3734617 doi: 10.1155/2019/3734617
    [18] Z. Taheri, S. Javadi, E. Babolian, Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method, Int. J. Comput. Appl. Math., 321 (2017), 336–347. https://doi.org/10.1016/j.cam.2017.02.027 doi: 10.1016/j.cam.2017.02.027
    [19] Y. Chen, Y. Sun, L. Liu, Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order Legendre functions, Appl. Math. Comput., 244 (2014), 847–858. https://doi.org/10.1016/j.amc.2014.07.050 doi: 10.1016/j.amc.2014.07.050
    [20] X. Li, C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), 1016–1051. https://doi.org/10.4208/cicp.020709.221209a doi: 10.4208/cicp.020709.221209a
    [21] X. Li, T. Tang, C. Xu, Numerical solutions for weakly singular Volterra integral equations using Chebyshev and Legendre pseudo-spectral Galerkin methods, J. Sci. Comput., 67 (2016), 43–64. https://doi.org/10.1007/s10915-015-0069-5 doi: 10.1007/s10915-015-0069-5
    [22] J. Cao, Z. Cai, Numerical analysis of a high-order scheme for nonlinear fractional differential equations with uniform accuracy, Numer. Math. Theor. Meth. Appl., 14 (2021), 71–112. https://doi.org/10.4208/nmtma.OA-2020-0039 doi: 10.4208/nmtma.OA-2020-0039
    [23] Z. Wang, J. Cui, Second-order two-scale method for bending behavior analysis of composite plate with 3-D periodic configuration and its approximation, Sci. China Math., 57 (2014), 1713–1732. https://doi.org/10.1007/s11425-014-4831-1 doi: 10.1007/s11425-014-4831-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1913) PDF downloads(157) Cited by(7)

Article outline

Figures and Tables

Figures(1)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog