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1. Introduction

All kinds of natural phenomena in nature can be explained by fractional calculus. For example,
fractional integral and derivative theory are used to solve problems in nonlinear vibration of viscoelastic
damping, control signal and processing, thermoelectric viscoelastic fluid, continuum and statistical
mechanics, and other fields [1–5]. It is well known that generalized fractional operators are obtained
by the extension of Caputo and Riemann-Liouville fractional derivatives. In convolution, because of
the complexity of weight and kernel function, it is more difficult to design the higher-order numerical
scheme of calculus equations with generalized fractional operators.

In the past decades, many numerical methods have been proposed for the differential and integral
equations of different type problems. Such as, collocation method based on the Muntz- Legendre
polynomials [6], Wavelet-Galerkin method and homotopy perturbation method [7], Legendre wavelets
method [8], the rational second kind Chebyshev pseudospectral method [9], An hp-version spectral
collocation method [10], and so on [11–14]. As one of the efficient numerical computing technique,
the spectral collocation method provides a powerful tool for solving fractional calculus equations in
recent years. Therefore, we also hope to provide a useful numerical method for fractional calculus
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equations.
In this paper, we considered the following fractional integro-differential equation:

Dα
t y(t) = f (t) +

1
Γ(µ)

∫ t

0
(t − s)µ−1y(s)ds +

∫ 1

0
K(s, t)y(s)ds, (1.1)

with an initial condition
y(0) = y0, (1.2)

where 0 < α < 1, 0 < µ < 1, t ∈ I = [0, 1], Dα
t is the classical fractional derivative of order α, f (t) and

K(s, t) are known functions, and y(t) is unknown function. This type of fractional integral-differential
equation appear in several other places as in the modelling of particle motion in physics and mechanics
in [15].

After careful planning, this article is developed as follows: the first section introduces the research
background of fractional calculus equation model. Then, some results of fractional
integro-differential and the properties of the polynomials in Section 2. In Section 3, based on the
polynomials, a new method of the spectral collocation and Gauss-Legendre quadrature rule is
proposed for solving fractional integro-differential problems. In Section 4, we analyze the error
truncation of the numerical method. It considers some examples to illustrate the high accuracy of the
proposed approach in Section 5. Finally, the conclusion is given.

2. Properties of the shifted Legendre polynomials

2.1. Fractional calculus

Several definitions of fractional calculus has been developed over time, it can be seen in [16, 17].

Definition 1. [16] The Riemann-Liouville fractional integral operator of order α ≥ 0 is defined

Iαg(x) =
1

Γ(α)

∫ x

0
(x − t)α−1g(t)dt, x ≥ 0, α ≥ 0.

Definition 2. [16] The fractional derivative of order α in the Caputo sense is defined

Dαg(x) = Im−α(Dmg(x)) =
1

Γ(m − α)

∫ x

0
(x − t)m−α−1g(m)(t)dt,

where m − 1 < α ≤ m, m ∈ N, x > 0.

The properties of the operator Iα and Dα as follows

Iαxγ =
Γ(γ + 1)

Γ(γ + 1 + α)
xγ+α,

Dαxγ =


0, γ ∈ N0, γ < α,

Γ(γ + 1)
Γ(γ + 1 − α)

xγ−α, otherwise.
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2.2. The shifted Legendre polynomials

According to the definition in [16, 18], we make it easier to solve Eq (1.1), we first introduce its
definition about the shifted Legendre polynomials of degree i over the interval [0, 1], as follows

ϕi(t) = Li(2t − 1), i = 0, 1, . . . ,

and it is orthogonal for the legendre polynomial Li on [−1, 1].
The shifted Legendre polynomial ϕi(t) satisies the following form

ϕ0(t) = 1, ϕ1(t) = 2t − 1,

ϕi+1(t) =
(2i + 1)(2t − 1)

i + 1
ϕi(t) −

i
i + 1

ϕi−1(t), i = 1, 2, . . . ,

and the complete basis is formed on [0, 1]. Then, the analytic form of ϕi(t) may be expressed with t as

ϕi(t) =

i∑
s=0

bs,its, i = 1, 2, . . . ,

where bs,i =
(−1)s+i(i+s)!

(i−s)!(s!)2 , and ϕi(0) = (−1)i, ϕi(1) = 1.
It is orthogonal under the constraint w = 1 for shifted Legendre polynomials on t ∈ [0, 1], that is∫ 1

0
ϕi(s)ϕ j(s)ds = 1

i+ j+1δi, j, here δi, j is Kronecker symbol.

2.3. Function approximation

In reference [18], the following symbols are defined in L2(I) for weighted inner product and its
norm as

(u, v) =

∫ 1

0
u(t)v(t)dt, f or all u, v ∈ L2(I), ‖u‖0 =

√
(u, u) = (

∫ 1

0
|u|2dt)

1
2 .

Property 1. [18] Suppose u ∈ L2(I) is arbitrary, there exists a unique q∗m ∈ Pm, the following relation
holds ∥∥∥u − q∗m

∥∥∥
0

= inf
qm∈Pm

‖u − qm‖0,

where m ∈ N, Pm is the space of polynomials of order m, q∗m(x) =

m∑
k=0

ûkφk(x), ûk =
(u, φk)
‖φk‖

2
0

, and {φk}
m
k=0

forms an L2-orthogonal basis for Pm.

By Property 1, for any y ∈ L2(I), there is a unique best approximation yN , such that

‖y − yN‖0 ≤ ‖y − g‖0,∀g ∈ Pm.

The relationship between the function y(t) ∈ L2(I) and the shifted Legendre polynomials as follows

y(t) =

∞∑
i=0

ziϕi(t), zi = (2i + 1)
∫ 1

0
y(τ)ϕi(τ)dτ.
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Then, the shifted Legendre polynomials with first (N+1)-terms are considered as

ΠNy(t) =

N∑
i=0

ziϕi(t), zi =
(y(τ), ϕi(τ))
‖ϕi(τ)‖20

. (2.1)

Similarly, for any function K(s, t) ∈ L2(I) with the variable s, it can be expanded by ϕi(s) as

K(s, t) ≈
N∑

i=0

ki(t)ϕi(s), ki(t) =
(K(s, t), ϕi(s))
‖ϕi(s)‖20

, (2.2)

which is used the Gauss-Legendre quadrature rule to compute the coefficients in this paper.

2.4. Fractional operational matrices of derivative and integral

An approximated of the derivative of the shifted Legendre polynomials is given as

Dγ
sΦ(s) ≈ DγΦ(s),

where Dγ is the derivative operation matrix of the shifted Legendre polynomials and
Φ(s) = (ϕ0(s), . . . , ϕN(s))T .

Lemma 1. [19] Suppose Dγ is an operation matrix of fractional derivatives of order γ > 0 for the
generalized shifted Legendre functions of m × m in the Caputo sense, then the d(γ)

i j are given for Dγ as

{
d(γ)

i j

}m−1,m−1

i, j=0
= (2 j + 1)

i∑
s=0

j∑
r=0

br, jb′s,i
Γ(s + 1)

Γ(s − γ + 1)
1

(s + r + 1) − γ
,

where

b′s,i =

{
0, s ∈ N0, s < γ,

b′s,i = bs,i, s < N0 and s ≥
[
γ
]

or s ∈ N0 and s ≥ γ,

and bs,i =
(−1)i+s(i+s)!

(i−s)!(s!)2 .

Then, we integrate for Φ(s) as follows

IυΦ(s) ≈ PυΦ(s),

so called Pυ is integral operator matrice of the shifted Legendre functions.

Lemma 2. [16] Suppose Pυ is the m ×m the generalized shifted Legendre functions operation matrix
of Riemann-Liouville fractional integral of order υ , then P(υ)

i, j can be obtained for Pυ as

{
P(υ)

i, j

}m−1,m−1

i, j=0
=

i∑
s=0

j∑
r=0

bs,ibr, j (2 j + 1)
Γ (s + 1)

Γ (s + υ + 1)
1

(r + s + 1) + υ
.
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3. Numerical algorithm

In this part, based on the shifted Legendre polynomials, we consider the idea of combination of
Gauss-Legendre quadrature rule and spectral collocation method to solve the Eq (1.1). Then, using
this numerical algorithm, we first expand y(t) and K(s, t) by the shifted Legendre polynomials of first
(N+1)-terms as

y(t) ≈ yN(t) =

N∑
i=0

ziϕi(t) = ZT Φ(t), (3.1)

K(s, t) ≈
N∑

j=0

k j(t)ϕ j(s) = KT Φ(s), (3.2)

where the coefficients are obtained by (2.1) and (2.2), respectively.
Substituting (3.1) and (3.2) in Eq (1.1), we obtain

Dα
t

N∑
i=0

ziϕi(t) = f (t) + Iµt
N∑

i=0

ziϕi(t) +

∫ 1

0
(

N∑
j=0

k j(t)ϕ j(s))(
N∑

i=0

ziϕi(s))ds,

based on the orthogonality of polynomials on certain interval, have

Dα
t

N∑
i=0

ziϕi(t) = f (t) + Iµt
N∑

i=0

ziϕi(t) +

N∑
i=0

ziki(t)
1

2i + 1
,

simplified as
Dα

t ZT Φ(t) = f (t) + Iµt ZT Φ(t) + ZT H(t), (3.3)

where H(t) = [h0(t), . . . , hN(t)]T , hi = ki(t)/(2i + 1), i = 0, 1, . . . ,N.
To solving the coefficients Z, we substitute collocation points into Eq (3.3) lead to

Dα
t ZT Φ(tr) = f (tr) + Iµt ZT Φ(tr) + ZT H(tr), (3.4)

where the points of shifted Chebyshev-Gauss are tr = (1−cos((2r+1)π/(2N +2)))/2, r = 0, . . . , N−1.
Thus, a system is formed by the N nonlinear equation. In addition, an algebraic equation with the initial
condition is provided to obtain Z with

yN(0) = y(0). (3.5)

The value of {zi}
N
i=0 can be obtained by solving Eqs (3.4) and (3.5), the approximate solution yN(t) =

ZT Φ(t) can be obtained. That is, the partial terms of vector Z in Eq (3.4) are deformed and Z is proposed
as

ZT [Dα
t Φ(tr) − Iµt Φ(tr) − H(tr)] = F, (3.6)

set
Air = Dα

t ϕi(tr) − Iµt ϕi(tr) − hi(tr), F = ( f0, . . . , fN−1), fr = f (tr),

where i = 0, 1, 2, · · · , N, r = 0, 1, 2, · · · , N − 1.
Then, by Eqs (3.5) and (3.6) we have

ZT [A,Φ(0)] = [F, y0], (3.7)

let Â = [A,Φ(0)], F̂ = [F, y0], we can be obtained Z by following

ZT = F̂ ∗ Â−1. (3.8)

AIMS Mathematics Volume 7, Issue 6, 9577–9587.



9582

4. Error analysis

The errors of the proposed method are analyzed, which is the work of this section. Then we
introduce the following approximation operator, we can see in [20]. In the time direction, we refer to
ΠN as the traditional orthogonal projection operator of L2(I) and PN(I) is a space of polynomials of
degree up to N with the time variable t. ΠN : L2(I)→ PN(I), that is, for any y ∈ L2(I), ΠNy ∈ PN(I), it
satisfies

((ΠNy − y), φ)I = 0, ∀φ ∈ PN(I).

In the following lemma, we give an error estimate for approximating the operator ΠN .

Lemma 3. [20] For 0 < α < 1, γ > 1, if y ∈ Hα(I) ∩ Hγ(I), then we have∥∥∥Dα
t (y − ΠNy)

∥∥∥
0
≤ CNα−γ‖y‖γ,

where C is a constant that is different from N.

Lemma 4. [20] Set the function y (t) be expanded as yN(t) = ZT Φ(t) by shifted Legendre polynomials
in [0, 1], where

Z = [z0, z1, z2, . . . , zN]T ,

and

zi = (2i + 1)
∫ 1

0
y (s)ϕi (s) ds,

then, such that
‖y(s) − yN(s)‖m ≤ CNm−γ‖y‖γ,

where C is a constant independent of N.

Similar to the Lemma 3.6 in [21], it is easy to proof the following Lemma.

Lemma 5. For 0 < µ < 1 and µ is arbitrary, if 0 < σ < min(1/2, µ), then

‖S y(s) − S yN(s)‖0 ≤ CN−σ‖y‖0,

where S y(s) = 1
Γ(µ)

∫ t

0
(t − s)µ−1y(s)ds, S yN(s) = 1

Γ(µ)

∫ t

0
(t − s)µ−1yN(s)ds and C is a constant

independent of N.

Next, replace y(t) and K(s, t) with yN(t) and KN(s, t) in (1.1), rewriting the equation as follows

Dα
t yN(t) = f (t) +

1
Γ(µ)

∫ t

0
(t − s)µ−1yN(s)ds +

∫ 1

0
KN(s, t)yN(s)ds, (4.1)

we define the following operators

L(v(t)) = Dα
t v(t) −

1
Γ(µ)

∫ t

0
(t − s)µ−1v(s)ds −

∫ 1

0
K(s, t)v(s)ds. (4.2)

In the following section, we estimate the error for L(y(t) − yN(t)).
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Theorem 1. Let y and yN be the analytic solution and numerical solutions of (1.1) and (1.2). Also
assume that ‖y‖γ < ∞, γ > 1, ||||K(s, t)||m||0 ≤ K,m ≥ 0, then

||L(y(t) − yN(t))||0 ≤ C(Nα−γ||y||γ + N−σ‖y‖0 + KN−γ||y||γ + KN−m−γ||y||γ + KN−m||y||0),

where K is a real numbers and C is a constant independent of N.

Proof. By Eqs (1.1) and (4.1) and triangle inequality, we obtain

||L(y(t) − yN(t))||0 ≤ ||Dα
t y(t) − Dα

t yN(t)||0 + ||
1

Γ(µ)

∫ t

0
(t − s)µ−1(y(s) − yN(s))ds||0

+ ||

∫ 1

0
K(s, t)y(s)ds −

∫ 1

0
KN(s, t)yN(s)ds||0 � R1 + R2 + R3,

(4.3)

where R1,R2,R3 are defined by the right term of (4.3), respectively.
For R1, it is easy to obtain based on the Lemma 3 as

R1 = ||Dα
t (y(t) − yN(t))||0 ≤ ||Dα

t (y − ΠNy)||0 ≤ CNα−γ||y(t)||γ. (4.4)

For R2, based on the Lemma 5 it is directly to obtain that

R2 ≤ CN−σ‖y‖0, (4.5)

where 0 < σ < min(1/2, µ).
Next, we will estimate the R3,

|R3| ≤ ||

∫ 1

0
K(s, t)y(s)ds −

∫ 1

0
K(s, t)yN(s)ds||0 + ||

∫ 1

0
K(s, t)yN(s)ds −

∫ 1

0
KN(s, t)yN(s)ds||0

= ||

∫ 1

0
K(s, t)(y(s) − yN(s))ds||0 + ||

∫ 1

0
(K(s, t) − KN(s, t))yN(s)ds||0

≤ ||||K(s, t)||0||0||y(s) − yN(s)||0 + ||||K(s, t) − KN(s, t)||0||0||yN(s)||0

≤ C(||||K(s, t)||0||0||y(s) − yN(s)||0 + ||||K(s, t) − KN(s, t)||0||0||yN(s)||0)

≤ C(KN−γ||y(s)||γ + N−m||||K(s, t)||m||0||yN(s)||0)

≤ C(KN−γ||y(s)||γ + N−mK||yN(s)||0).
(4.6)

When N → ∞, we get yN(s)→ y(s), then we have

‖yN(s)‖0 ≤ ‖yN(s) − y(s)‖0 + ‖y(s)‖0
≤ CN−γ‖y‖γ + ‖y‖0,

(4.7)

where C is a constant that is different from N.
Using (4.4)–(4.7), we have

||L(y(t) − yN(t))||0 ≤ C(Nα−γ||y||γ + N−σ‖y‖0 + KN−γ||y||γ + KN−m−γ||y||γ + KN−m||y||0). (4.8)

At this point, the above theorem has been proved. �
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5. Numerical examples

In this section, it is verified about the validity and applicability of the method by the following
examples.

Example 1. Consider the fractional integro-differential equation as follows

Dα
t y(t) = f (t) +

1
Γ(µ)

∫ t

0
(t − s)µ−1y(s)ds +

∫ 1

0
es sin(t)y(s)ds, (5.1)

where
f (t) = t−αE1,1−α −

Γ(1)
Γ(1 − α)

t−α − tµE1,1+µ +
Γ(1)

Γ(1 + µ)
tµ − sin(t)(

1
2

e2 − e +
1
2

),

its exact solution is y(t) = et − 1, where E1,1−α and E1,1+µ is the classical Mittag-Leffler function.

Example 2. The fractional integro-differential equation is considered as

Dα
t y(t) = f (t) +

1
Γ(µ)

∫ t

0
(t − s)µ−1y(s)ds +

∫ 1

0
tsy(s)ds, (5.2)

where

f (t) = t−αE1,1−α(t) −
Γ(2)

Γ(2 − α)
t1−α −

Γ(1)
Γ(1 − α)

t−α − tµE1,1+µ(t) +
Γ(2)

Γ(2 + µ)
t1+µ +

Γ(1)
Γ(1 + µ)

tµ −
1
6

t,

its exact solution is y(t) = et − t − 1.

In Eqs (5.1) and (5.2) with the initial condition y(0) = 0. In the numerical implementation, we
provide a value of µ and the nodes and weights of the Gauss-Legendre quadrature rule. With the
increasing value of N, the error result of different α are shown in Figure 1. A logarithmic scale has
been used for error-axis in figures. Clearly, the errors show an exponential decay, since in these semi-
log representations one observes that the error variations are essentially linear versus the polynomial
degrees for α. The results show that the method with a high accuracy to solving fractional integro-
differential equations, and the error of ‖y(t)−yN(t)‖0 converge exponentially with the increase of N and
reach machine precision. Meanwhile, the L2 error has the advantage that it can better reflect the actual
situation error of ‖y(t) − yN(t)‖0 in Tables 1 and 2.

2 4 6 8 10 12 14

Polynomial degree N

10-15

10-10

10-5

E
rr

or

alpha=0.3
alpha=0.55
alpha=0.75

2 4 6 8 10 12 14

Polynomial degree N

10-15

10-10

10-5

E
rr

or

alpha=0.3
alpha=0.55
alpha=0.75

Figure 1. Errors of several typical α for Examples 1 (left) and 2 (right).
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error N = 4 N = 6 N = 8 N = 10 N = 12
α = 0.3 6.0643 × 10−4 9.0882 × 10−7 7.7345 × 10−10 4.3652 × 10−13 1.9730 × 10−15

α = 0.55 1.2406 × 10−4 1.6240 × 10−7 1.2893 × 10−10 6.9587 × 10−14 4.2162 × 10−16

α = 0.75 5.2167 × 10−5 7.2391 × 10−8 6.2131 × 10−11 3.5777 × 10−14 4.1743 × 10−16

Table 1. Error of ‖y(t) − yN(t)‖0 for Example 1.

error N = 4 N = 6 N = 8 N = 10 N = 12
α = 0.3 7.9304 × 10−5 1.2362 × 10−7 1.1428 × 10−10 6.9632 × 10−14 4.4096 × 10−16

α = 0.55 5.4240 × 10−5 8.3684 × 10−8 7.5904 × 10−11 4.5558 × 10−14 2.4855 × 10−16

α = 0.75 4.3199 × 10−5 6.5161 × 10−8 5.8028 × 10−11 3.3794 × 10−14 2.2149 × 10−16

Table 2. Error of ‖y(t) − yN(t)‖0 for Example 2.

In order to reflect the effectiveness of the proposed method, the results be compared with euler
method in following example.

Example 3. Consider the FIDE

D0.5
t y (t) = f (t) +

1
Γ(µ)

∫ t

0
(t − s)µ−1y (s)ds +

∫ 1

0
t3s3y (s)ds, (5.3)

with the initial condition y(0) = 0. Its exact solution is y(t) = t3.

From Table 3, it is clear that the error of absolute with the present method by polynomials of
degree N approximation. Clearly, in Example 3 the method gives more accurate results by using lower
order polynomials and fewer points than the euler method, and our method is easier to implement and
understand.

t eeuler eeuler eeuler epresent epresent

h = 1/29 h = 1/210 h = 1/211 N = 4 N = 6
0.1 3.3049 × 10−5 3.4391 × 10−5 2.0632 × 10−5 1.6588 × 10−16 5.4861 × 10−17

0.5 7.1737 × 10−3 7.1415 × 10−3 7.1226 × 10−3 3.0531 × 10−16 9.7145 × 10−17

1 4.7472 × 10−2 4.6866 × 10−2 4.6550 × 10−2 2.2204 × 10−16 4.4409 × 10−16

Table 3. epresent(t) = |y(t) − yN(t)|, eeuler(t) = |y(t) − ỹ(t)|, ỹ(t) is the computed solution by the
euler method, h is the step size.

6. Conclusions

Based on the shifted Legendre polynomials, the idea of combining Gauss-Legendre quadrature rule
and spectral collocation method, a new spectral collocation method is proposed for solving a fractional
integro-differential equation in this paper. The error of this method is analyzed by Theorem 1. It is
found that the error decreases exponentially from Figure 1, Tables 1 and 2. In Table 3, the method gives
more accurate results than the euler method. The results show that this method is high accuracy and
easy to be implemented. In the future, based on the idea of [22, 23], we will use the shifted Legendre
polynomials for stochastic fractional integro-differential problems and shape optimization.
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