Research article

Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function

  • Received: 27 December 2021 Revised: 26 February 2022 Accepted: 28 February 2022 Published: 14 March 2022
  • MSC : 26A33, 34A08, 34B10, 34D20

  • In this manuscript, we analyze the existence, uniqueness and Ulam's stability for Caputo proportional fractional integro-differential equation involving mixed nonlocal conditions with respect to another function. The uniqueness result is proved via Banach's fixed point theorem and the existence results are established by using the Leray-Schauder nonlinear alternative and Krasnoselskii's fixed point theorem. Furthermore, by using the nonlinear analysis techniques, we investigate appropriate conditions and results to study various different types of Ulam's stability. In addition, numerical examples are also constructed to demonstrate the application of the main results.

    Citation: Bounmy Khaminsou, Weerawat Sudsutad, Jutarat Kongson, Somsiri Nontasawatsri, Adirek Vajrapatkul, Chatthai Thaiprayoon. Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function[J]. AIMS Mathematics, 2022, 7(6): 9549-9576. doi: 10.3934/math.2022531

    Related Papers:

  • In this manuscript, we analyze the existence, uniqueness and Ulam's stability for Caputo proportional fractional integro-differential equation involving mixed nonlocal conditions with respect to another function. The uniqueness result is proved via Banach's fixed point theorem and the existence results are established by using the Leray-Schauder nonlinear alternative and Krasnoselskii's fixed point theorem. Furthermore, by using the nonlinear analysis techniques, we investigate appropriate conditions and results to study various different types of Ulam's stability. In addition, numerical examples are also constructed to demonstrate the application of the main results.



    加载中


    [1] I. Podlubny, Fractional differential equations, New York: Academic Press, 1998.
    [2] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
    [3] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006.
    [4] R. Magin, Fractional calculus in bioengineering, Connecticut: Begell House Publishers, 2006.
    [5] R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional order systems: modeling and control applications, Singapore: World Scientific, 2010.
    [6] K. Diethelm, The analysis of fractional differential equations: an application-oriented exposition using differential operators of caputo type, Berlin: Springer-Verlag, 2010. http://dx.doi.org/10.1007/978-3-642-14574-2
    [7] U. Katugampola, New fractional integral unifying six existing fractional integrals, arXiv: 1612.08596.
    [8] F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. http://dx.doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
    [9] T. Khan, M. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. http://dx.doi.org/10.1016/j.cam.2018.07.018 doi: 10.1016/j.cam.2018.07.018
    [10] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. http://dx.doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7
    [11] D. Baleanu, A. Fernandez, A. Akgül, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 360. http://dx.doi.org/10.3390/math8030360 doi: 10.3390/math8030360
    [12] A. Akgül, D. Baleanu, Analysis and applications of the proportional Caputo derivative, Adv. Differ. Equ., 2021 (2021), 136. http://dx.doi.org/10.1186/s13662-021-03304-0 doi: 10.1186/s13662-021-03304-0
    [13] F. Jarad, M. Alqudah, T. Abdeljawad, On more generalized form of proportional fractional operators, Open Math., 18 (2020), 167–176. http://dx.doi.org/10.1515/math-2020-0014 doi: 10.1515/math-2020-0014
    [14] F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 303. http://dx.doi.org/10.1186/s13662-020-02767-x doi: 10.1186/s13662-020-02767-x
    [15] E. Set, B. Çelik, E. Alan, A. Akdemir, Some new integral inequalities associated with generalized proportional fractional operators, Numer. Meth. Part. Differ. Equ., in press. http://dx.doi.org/10.1002/num.22717
    [16] G. Rahman, T. Abdeljawad, F. Jarad, K. Nisar, Bounds of generalized proportional fractional integrals in general form via convex functions and their applications, Mathematics, 8 (2020), 113. http://dx.doi.org/10.3390/math8010113 doi: 10.3390/math8010113
    [17] T. Abdeljawad, S. Rashid, A. El-Deeb, Z. Hammouch, Y. Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, Adv. Differ. Equ., 2020 (2020), 463. http://dx.doi.org/10.1186/s13662-020-02935-z doi: 10.1186/s13662-020-02935-z
    [18] S. Zhou, S. Rashid, A. Rauf, F. Jarad, Y. Hamed, K. Abualnaja, Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function, AIMS Mathematics, 6 (2021), 8001–8029. http://dx.doi.org/10.3934/math.2021465 doi: 10.3934/math.2021465
    [19] M. Abbas, Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function, Math. Method. Appl. Sci., 44 (2021), 10432–10447. http://dx.doi.org/10.1002/mma.7419 doi: 10.1002/mma.7419
    [20] C. Tearnbucha, W. Sudsutad, Stability analysis of boundary value problems for Caputo proportional fractional derivative of a function with respect to another function via impulsive Langevin equation, AIMS Mathematics, 6 (2021), 6647–6686. http://dx.doi.org/10.3934/math.2021391 doi: 10.3934/math.2021391
    [21] M. Abbas, M. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry, 13 (2021), 264. http://dx.doi.org/10.3390/sym13020264 doi: 10.3390/sym13020264
    [22] S. Rashid, F. Jarad, M. Noor, H. Kalsoom, Y. Chu, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2019), 1225. http://dx.doi.org/10.3390/math7121225 doi: 10.3390/math7121225
    [23] S. Zhou, S. Rashid, S. Praveen, A. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, AIMS Mathematics, 6 (2021), 4507–4525. http://dx.doi.org/10.3934/math.2021267 doi: 10.3934/math.2021267
    [24] S. Rashid, Z. Hammouch, F. Jarad, Y. Chu, New estimates of integral inequalities via generalized proportional fractional integral operator with respect to another function, Fractals, 28 (2020), 20400277. http://dx.doi.org/10.1142/S0218348X20400277 doi: 10.1142/S0218348X20400277
    [25] S. Rashid, F. Jarad, Y. Chu, A note on reverse minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 7630260. http://dx.doi.org/10.1155/2020/7630260 doi: 10.1155/2020/7630260
    [26] J. Sousa, E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50–56. http://dx.doi.org/10.1016/j.aml.2018.01.016 doi: 10.1016/j.aml.2018.01.016
    [27] J. Sousa, E. Capelas de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the $\phi$-Hilfer operator, J. Fixed Point Theory Appl., 20 (2018), 96. http://dx.doi.org/10.1007/s11784-018-0587-5 doi: 10.1007/s11784-018-0587-5
    [28] X. Hao, H. Sun, L. Liu, Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval, Math. Method. Appl. Sci., 41 (2018), 6984–6996. http://dx.doi.org/10.1002/mma.5210 doi: 10.1002/mma.5210
    [29] R. Shah, A. Zada, A fixed point approach to the stability of a nonlinear volterra integrodiferential equation with delay, Hacet. J. Math. Stat., 47 (2018), 615–623. http://dx.doi.org/10.15672/HJMS.2017.467 doi: 10.15672/HJMS.2017.467
    [30] G. Wang, K. Pei, R. Agarwal, L. Zhang, B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230–239. http://dx.doi.org/10.1016/j.cam.2018.04.062 doi: 10.1016/j.cam.2018.04.062
    [31] S. Aydogan, D. Baleanu, A. Mousalou, S. Rezapour, On high order fractional integro-differential equations including the Caputo-Fabrizio derivative, Bound. Value Probl., 2018 (2018), 90. http://dx.doi.org/10.1186/s13661-018-1008-9 doi: 10.1186/s13661-018-1008-9
    [32] A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2018), 60–65. http://dx.doi.org/10.1016/j.amc.2019.01.014 doi: 10.1016/j.amc.2019.01.014
    [33] P. Borisut, P. Kumam, I. Ahmed, K. Sitthithakerngkiet, Nonlinear Caputo fractional derivative with nonlocal Riemann-Liouville fractional integral condition via fixed point theorems, Symmetry, 11 (2019), 829. http://dx.doi.org/10.3390/sym11060829 doi: 10.3390/sym11060829
    [34] J. Sousa, F. Rodrigues, E. Capelas de Oliveira, Stability of the fractional Volterra integro-differential equation by means of $\psi$-Hilfer operator, Math. Method. Appl. Sci., 42 (2019), 3033–3043. http://dx.doi.org/10.1002/mma.5563 doi: 10.1002/mma.5563
    [35] D. Baleanu, S. Rezapour, Z. Saberpour, On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation, Bound. Value Probl., 2019 (2019), 79. http://dx.doi.org/10.1186/s13661-019-1194-0 doi: 10.1186/s13661-019-1194-0
    [36] I. Ahmed, P. Kuman, K. Shah, P. Borisut, K. Sitthithakerngkiet, M. Demba, Stability results for implicit fractional pantograph differential equations via $\phi$-Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics, 8 (2020), 94. http://dx.doi.org/10.3390/math8010094 doi: 10.3390/math8010094
    [37] S. Ben-Chikh, A. Amara, S. Etemad, S. Rezapour, On Ulam-Hyers-Rassias stability of a generalized Caputo type multi-order boundary value problem with four-point mixed integro-derivative conditions, Adv. Differ. Equ., 2020 (2020), 680. http://dx.doi.org/10.1186/s13662-020-03139-1 doi: 10.1186/s13662-020-03139-1
    [38] P. Borisut, P. Kumam, I. Ahmed, W. Jirakitpuwapat, Existence and uniqueness for $\psi$-Hilfer fractional differential equation with nonlocal multi-point condition, Math. Method. Appl. Sci., 44 (2020), 2506–2520. http://dx.doi.org/10.1002/mma.6092 doi: 10.1002/mma.6092
    [39] I. Ahmed, P. Kumam, F. Jarad, P. Borisut, K. Sitthithakerngkiet, A. Ibrahim, Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer-Katugampola fractional derivative, Adv. Differ. Equ., 2020 (2020), 225. http://dx.doi.org/10.1186/s13662-020-02681-2 doi: 10.1186/s13662-020-02681-2
    [40] C. Thaiprayoon, W. Sudsutad, S. Ntouyas, Mixed nonlocal boundary value problem for implicit fractional integro-differential equations via $\psi$-Hilfer fractional derivative, Adv. Differ. Equ., 2021 (2021), 50. http://dx.doi.org/10.1186/s13662-021-03214-1 doi: 10.1186/s13662-021-03214-1
    [41] M. Abdo, T. Abdeljawad, K. Kucche, M. Alqudah, S. Ali, M. Jeelani, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Differ. Equ., 2021 (2021), 65. http://dx.doi.org/10.1186/s13662-021-03229-8 doi: 10.1186/s13662-021-03229-8
    [42] C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, S. Rezapour, On the qualitative analysis of the fractional boundary value problem describing thermostat control model via $\psi$-Hilfer fractional operator, Adv. Differ. Equ., 2021 (2021), 201. http://dx.doi.org/10.1186/s13662-021-03359-z doi: 10.1186/s13662-021-03359-z
    [43] B. Khaminsou, W. Sudsutad, C. Thaiprayoon, J. Alzabut, S. Pleumpreedaporn, Analysis of impulsive boundary value pantograph problems via Caputo proportional fractional derivative under Mittag-Leffler functions, Fractal Fract., 5 (2021), 251. http://dx.doi.org/10.3390/fractalfract5040251 doi: 10.3390/fractalfract5040251
    [44] J. Ockendon, A. Tayler, The dynamics of acurrent collection system for an electric locomotive, Proc. R. Soc. Lond. A, 332 (1971), 447–468. http://dx.doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [45] D. Li, M. Liu, Runge-Kutta methods for the multi-pantograph delay equation, Appl. Math. Comput., 163 (2005), 383–395. http://dx.doi.org/10.1016/j.amc.2004.02.013 doi: 10.1016/j.amc.2004.02.013
    [46] M. Sezer, S. Yalçinbaş, N. Şahin, Approximate solution of multi-pantograph equation with variable coefficients, J. Comput. Appl. Math., 214 (2008), 406–416. http://dx.doi.org/10.1016/j.cam.2007.03.024 doi: 10.1016/j.cam.2007.03.024
    [47] Z. Yu, Variational iteration method for solving the multi-pantograph delay equation, Phys. Lett. A, 372 (2008), 6475–6479. http://dx.doi.org/10.1016/j.physleta.2008.09.013 doi: 10.1016/j.physleta.2008.09.013
    [48] S. Karimi-Vanani, J. Sedighi-Hafshejani, F. Soleymani, M. Khan, On the numerical solution of generalized pantograph equation, World Appl. Sci. J., 13 (2011), 2531–2535.
    [49] C. Pappalardo, M. De Simone, D. Guida, Multibody modeling and nonlinear control of the pantograph/catenary system, Arch. Appl. Mech., 89 (2019), 1589–1626. http://dx.doi.org/10.1007/s00419-019-01530-3 doi: 10.1007/s00419-019-01530-3
    [50] M. Chamekh, T. Elzaki, N. Brik, Semianalytical solution for some proportional delay differential equations, SN Appl. Sci., 1 (2019), 148. http://dx.doi.org/10.1007/s42452-018-0130-8 doi: 10.1007/s42452-018-0130-8
    [51] D. Li, C. Zhang, Long time numerical behaviors of fractional pantograph equations, Math. Comput. Simulat., 172 (2020), 244–257. http://dx.doi.org/10.1016/j.matcom.2019.12.004 doi: 10.1016/j.matcom.2019.12.004
    [52] K. Balachandran, S. Kiruthika, J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. http://dx.doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6
    [53] S. Harikrishman, E. Elsayed, K. Kanagarajan, Existence and uniqueness results for fractional pantograph equations involving $\psi$-Hilfer fractional derivative, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 25 (2018), 319–328.
    [54] S. Asawasamrit, W. Nithiarayaphaks, S. Ntouyas, J. Tariboon, Existence and stability analysis for fractional differential equations with mixed nonlocal conditions, Mathematics, 7 (2019), 117. http://dx.doi.org/10.3390/math7020117 doi: 10.3390/math7020117
    [55] D. Boucenna, D. Baleanu, A. Makhlouf, A. Nagy, Analysis and numerical solution of the generalized proportional fractional Cauchy problem, Appl. Numer. Math., 167 (2021), 173–186. http://dx.doi.org/10.1016/j.apnum.2021.04.015 doi: 10.1016/j.apnum.2021.04.015
    [56] A. Yang, Y. Han, Y. Zhang, L. Wang, D. Zhang, X. Yang, On local fractional Volterra integro-differential equations in fractal steady heat transfer, Therm. Sci., 20 (2016), 789–793. http://dx.doi.org/10.2298/TSCI16S3789Y doi: 10.2298/TSCI16S3789Y
    [57] V. Tarasov, Fractional integro-differential equations for electromagnetic waves in dielectric media, Theor. Math. Phys., 158 (2009), 355–359. http://dx.doi.org/10.1007/s11232-009-0029-z doi: 10.1007/s11232-009-0029-z
    [58] C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, Switzerland: Springer, 2016. http://dx.doi.org/10.1007/978-3-319-28739-3
    [59] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. http://dx.doi.org/10.1007/978-0-387-21593-8
    [60] M. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1243) PDF downloads(172) Cited by(2)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog