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1. Introduction

Fractional calculus (FC), also known as non-integer calculus, has been widely studied in recent
over the past decades (beginning 1695) in fields of applied sciences and engineering. FC deals
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with fractional-order integral and differential operators, which establishes phenomenon model as an
increasingly realistic tool for real-world problems. In addition, it has been properly specified the term
“memory” particularly in mathematics, physics, chemistry, biology, mechanics, electricity, finance,
economics and control theory, we recommend these books to readers who require to learn more about
the core ideas of fractional operators [1–6]. However, recently, several types of fractional operators
have been employed in research education that mostly focus on the Riemann-Liouville (RL) [3],
Caputo [3], Hadamard [3], Katugampola [7], conformable [8] and generalized conformable [9].
In 2017, Jarad et al. [10] introduced generalized RL and Caputo proportional fractional derivatives
including exponential functions in their kernels. After that, in 2021, new fractional operators
combining proportional and classical differintegrals have been introduced in [11]. Moreover, Akgül
and Baleanu [12] studied the stability analysis and experiments of the proportional Caputo derivative.

Recently, one type of fractional operator that is popular with researchers now is proportional
fractional derivative and integral operators (PFDOs/PFIOs) with respect to another function; for more
details see [13, 14]. For α > 0, ρ ∈ (0, 1], ψ ∈ C1([a, b]), ψ′ > 0, the PFIO of order α of h ∈ L1([a, b])
with respect to ψ is given as:

ρIα,ψa [h(t)] =
1

ραΓ(α)

∫ t

a

ρHα−1
ψ (t, s)[h(s)]ψ′(s)ds, (1.1)

where Γ(α) =
∫ ∞

0
sα−1e−sds, s > 0, and

ρHα−1
ψ (t, s) = e

ρ−1
ρ

(
ψ(t)−ψ(s)

)(
ψ(t) − ψ(s)

)α−1
. (1.2)

The Riemann-Liouville proportional fractional derivative (RL-PFD) of order α of h ∈ Cn([a, b])
with respect to ψ is given by

ρDα,ψa [h(t)] = ρDn,ψρ
aI

n−α,ψ[h(t)] =
ρDn,ψ

t

ρn−αΓ(n − α)

∫ t

a

ρHn−α−1
ψ (t, s)[h(s)]ψ′(s)ds, (1.3)

with n = [α] + 1, where [α] denotes the integer part of order α, ρDn,ψ = ρDψ · ρDψ · · · ρDψ︸               ︷︷               ︸
n times

,

and ρDψ[h(t)] = (1 − ρ)h(t) + ρh′(t))/ψ′(t). The PFD in Caputo type is given as in

CρDα,ψa [h(t)] = ρIn−α,ψa

[
ρDn,ψ[h(t)]

]
=

ρα−n

Γ(n − α)

∫ t

a

ρHn−α−1
ψ (t, s) ρDn,ψ[h(s)]ψ′(s)ds. (1.4)

The relation of PFI and Caputo-PFD which will be used in this manuscript as

ρIα,ψa

[
CρDα,ψa [h(t)]

]
= h(t) −

n−1∑
k=0

ρDk,ψ[h(a)]
ρkk!

ρH k+1
ψ (t, a). (1.5)

Moreover, for α, β > 0 and ρ ∈ (0, 1], we have the following properties

ρIα,ψa

[
ρH

β−1
ψ (t, a)

]
=

Γ(β)
ραΓ(β + α)

ρH
β+α−1
ψ (t, a), (1.6)

CρDα,ψa+

[
ρH

β−1
ψ (t, a)

]
=

ραΓ(β)
Γ(β − α)

ρH
β−α−1
ψ (t, a). (1.7)
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Notice that if we set ρ = 1 in (1.1), (1.3) and (1.4), then we have the RL-fractional operators [3]
with ψ(t) = t, the Hadamard fractional operators [3] with ψ(t) = log t, the Katugampola fractional
operators [7] with ψ(t) = tµ/µ, µ > 0, the conformable fractional operators [8] with ψ(t) = (t − a)µ/µ,
µ > 0 and the generalized conformable fractional operators [9] with ψ(t) = tµ+φ/(µ + φ), respectively.
Recent interesting results on PFOs with respect to another function could be mention in [15–25].

Exclusive investigations in concepts of qualitative property in fractional-order differential equations
(FDEs) have recently gotten a lot of interest from researchers as existence property (EP) and Ulam’s
stability (US). The EP of solutions for FDEs with initial or boundary value conditions has been
investigated applying classical/modern fixed point theorems (FPTs). As we know, US is four types like
Hyers-Ulam stability (HU), generalized Hyers-Ulam stability (GHU), Hyers-Ulam-Rassias stability
(HUR) and generalized Hyers-Ulam-Rassias stability (GHUR). Because obtaining accurate solutions
to fractional differential equations problems is extremely challenging, it is beneficial in various of
optimization applications and numerical analysis. As a result, it is requisite to develop concepts of
US for these issues, since studying the properties of US does not need us to have accurate solutions
to the proposed problems. This qualitative theory encourages us to obtain an efficient and reliable
technique for solving fractional differential equations because there exists a close exact solution when
the purpose problem is Ulam stable. We suggest some interesting papers about qualitative results of
fractional initial/boundary value problems (IVPs/BVPs) involving many types of non-integer order,
see [26–43] and references therein.

We are going to present some of the researches that inspired this manuscript. In recent years,
pantograph equation (PE) is a type of proportional delay differential equation emerging in deterministic
situations which first studied by Ockendon and Taylor [44]: u′(t) = µu(t) + κu(λt), a < t < T,

u(0) = u0 = A, 0 < λ < 1, µ, κ ∈ R.
(1.8)

The problem (1.8) has been a broad area of applications in applied branchs such as science, medicine,
engineering and economics that use the sake of PEs to model some phenomena of the problem at
present which depend on the previous states. For more evidences of PEs ,see [45–51]. There are many
researches of literature on nonlinear fractional differential equations involving a specific function with
initial, boundary, or nonlocal conditions, for examples in 2013, Balachandran et al. [52] discussed the
initial nonlinear PEs as follows:

CDα[u(t)] = h(t, u(t), u(σt)), α ∈ (0, 1], 0 < t < 1,

u(0) = u0, 0 < σ < 1,
(1.9)

where u0 ∈ R, CDα denotes the Caputo fractional derivative of order α and h ∈ C([0, 1] × R2,R). FC
and FPTs were applied to discuss the existence properties of the solutions in their work. In 2018,
Harikrishman and co-workers [53] examined the existence properties of ψ-Hilfer fractional derivative
for nonlocal problem for PEs:

HDα,β;ψ
a+ [u(t)] = h(t, u(t), u(σt)), t ∈ (a, b), σ ∈ (0, 1), α ∈ (0, 1)

I1−γ;ψ
a+ [u(a)] =

k∑
i=1

ciu(τi), τi ∈ (a, b], α ≤ γ = α + β − αβ,
(1.10)
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where HDα,β;ψ
a+ represents the ψ-Hilfer fractional derivative of order α and type β ∈ [0, 1], I1−γ;ψ

a+ is
RL-fractional integral of order 1 − γ with respect to ψ so that ψ′ > 0 and h ∈ C([a, b] × R2,R).
Asawasamrit and co-workers [54] used Schaefer’s and Banach’s FPTs to establish the existence
properties of FDEs with mixed nonlocal conditions (MNCs) in 2019. In 2021, Boucenna et al. [55]
investigated the existence and uniqueness theorem of solutions for a generalized proportional Caputo
fractional Cauchy problem. They solved the proposed problem based on the decomposition formula.
Amongst important fractional equations, one of the most interesting equations is the fractional integro-
differential equations, which provide massive freedom to explain processes involving memory and
hereditary properties, see [56, 57].

Recognizing the importance of all parts that we mentioned above, motivated us to generate this
paper which deals with the qualitative results to the Caputo proportional fractional integro-differential
equation (PFIDE) withMNCs:

CρDα,ψa+ [u(t)] = f (t, u(t), u(λt), ρIω,ψa+ [u(λt)], CρDα,ψa+ [u(λt)]), t ∈ (a,T ),

m∑
i=1

γiu(ηi) +

n∑
j=1

κ j
CρD

β j,ψ

a+ [u(ξ j)] +

k∑
r=1

σr
ρIδr ,ψ

a+ [u(θr)] = A,
(1.11)

where CρD
q,ψ
a+ is the Caputo-PFDO with respect to another increasing differentiable function ψ of order

q = {α, β j} via 0 < β j < α ≤ 1, j = 1, 2, . . . , n, 0 < ρ ≤ 1, 0 < λ < 1, ρIp,ψa+ is the PFIO with respect
to another increasing differentiable function ψ of order p = {ω, δr} > 0 for r = 1, 2, . . . , k, 0 < ρ ≤ 1,
γi, κ j, σr, A ∈ R, 0 ≤ a ≤ ηi, ξ j, θr ≤ T , i = 1, 2, . . . ,m, f ∈ C(J × R4,R), J = [a,T ]. We use
the help of the famous FPTs like Banach’s, Leray-Schauder’s nonlinear alternative and Krasnoselskii’s
to discuss the existence properties of the solutions for (1.11). Moreover, we employ the context of
different kinds of US to discuss the stability analysis. The results are well demonstrated by numerical
examples at last section.

The advantage of definingMNCs of the problem (1.11) is it covers many cases as follows:

• If we set κ j = σr = 0, then (1.11) is deducted to the proportional multi-point problem.
• If we set γi = σr = 0, then (1.11) is deducted to the PFD multi-point problem.
• If we set γi = κ j = 0, then (1.11) is deducted to the PFI multi-point problem.
• If we set α = ρ = 1, (1.11) emerges in nonlocal problems [58].

This work is collected as follows. Section 2 provides preliminary definitions. The existence results
of solutions for (1.11) is studied in Section 3. In Section 4, stability analysis of solution for (1.11)
in frame of HU, GHU, HUR and GHUR are given is established. Section 5 contains the example to
illustrate the theoretical results. In addition, the summarize is provided in the last part.

2. Preliminaries

Before proving, assume that E = C(J ,R) is the Banach space of all continuous functions from J
into R provided with ‖u‖ = supt∈J {|u(t)|}. The symbol ρIq,ψa+ [Fu(s)(c)] means that

ρI
q,ρ,ψ
a+ [Fu(c)] =

1
ρqΓ(q)

∫ c

a

ρH
q−1
ψ (c, s)[Fu(s)]ψ′(s)ds,
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where q = {α, α − β j, α + δr}, c = {t, ηi, ξ j, θr}, and

Fu(t) := f (t, u(t), u(λt), ρIω,ψa+ [u(λt)], Fu(λt)). (2.1)

In order to convert the considered problem into a fixed point problem, (1.11) must be transformed
to corresponding an integral equation. We discuss the following key lemma.

Lemma 2.1. Let 0 < β j < α ≤ 1, j = 1, 2, . . . , n, ρ > 0, δr, > 0, r = 1, 2, . . . , k and Ω , 0. Then, the
Caputo-PFIDE withMNCs:

CρDα,ψa+ [u(t)] = Fu(t), t ∈ (a,T ),
m∑

i=1

γiu(ηi) +

n∑
j=1

κ j
CρD

β j,ψ

a+ [u(ξ j)] +

k∑
r=1

σr
ρIδr ,ψ

a+ [u(θr)] = A,
(2.2)

is equivalent to the integral equation

u(t) = ρIα,ψa+ [Fu(t)]+
e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
Ω

(
A−

m∑
i=1

γi
ρIα,ψa+ [Fu(ηi)]−

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [Fu(ξ j)]−
k∑

r=1

σr
ρIα+δr ,ψ

a+ [Fu(θr)]
)
,

(2.3)
where

Ω =

m∑
i=1

γie
ρ−1
ρ

(
ψ(ηi)−ψ(a)

)
+

k∑
r=1

σr
ρH

δr+1
ψ (θr, a)

ρδrΓ(1 + δr)
. (2.4)

Proof. Suppose u is the solution of (2.2). By using (1.5), the integral equation can be rewritten as

u(t) = ρIα,ψa+ [Fu(t)] + c1e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
, (2.5)

where c1 ∈ R. Taking CρD
β j,ψ

a+ and ρIδr ,ψ
a+ into (2.5) with (1.6) and (1.7), we obtain

CρD
β j,ψ

a+ [u(t)] = ρI
α−β j,ψ

a+ [Fu(t)],

ρIδr ,ψ
a+ [u(t)] = ρIα+δr ,ψ

a+ [Fu(t)] + c1

ρH
δr+1
ψ (t, a)

ρδrΓ(1 + δr)
.

Applying the nonlocal conditions in (2.2), we have

A =

m∑
i=1

γi
ρIα,ψa+ [Fu(ηi)] +

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [Fu(ξ j)] +

k∑
r=1

σr
ρIα+δr ,ψ

a+ [Fu(θr)]

+c1

 m∑
i=1

γie
ρ−1
ρ

(
ψ(ηi)−ψ(a)

)
+

k∑
r=1

σr
ρH

δr+1
ψ (θr, a)

ρδrΓ(1 + δr)

 .
Solving the above equation, we get the value

c1 =
1
Ω

A −
m∑

i=1

γi
ρIα,ψa+ [Fu(ηi)] −

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [Fu(ξ j)] −
k∑

r=1

σr
ρIα+δr ,ψ

a+ [Fu(θr)]

 ,
where Ω is given as in (2.4). Taking c1 in (2.5), we obtain (2.3).

On the other hand, it is easy to show by direct computing that u(t) is provided as in (2.3) verifies (2.2)
via the givenMNCs. The proof is done. �
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3. Existence results

By using Lemma 2.1, we will set the operator K : E → E

(Ku)(t) = ρIα,ψa+ [Fu(t)] +
e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
Ω

(
A −

m∑
i=1

γi
ρIα,ψa+ [Fu(ηi)] −

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [Fu(ξ j)]

−

k∑
r=1

σr
ρIα+δr ,ψ

a+ [Fu(θr)]
)
, (3.1)

where K1, K2 : E → E defined by

(K1u)(t) = ρI
α,ψ
a+ Fu(t), (3.2)

(K2u)(t) =
e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
Ω

(
A −

m∑
i=1

γi
ρIα,ψa+ [Fu(ηi)] −

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [Fu(ξ j)]

−

k∑
r=1

σr
ρIα+δr ,ψ

a+ [Fu(θr)]
)
. (3.3)

Notice that Ku = K1u + K2u. It should be noted that (1.11) has solutions if and only if K has
fixed points. Next, we are going to examine the existence properties of solutions for (1.11), which
is discussed by employing Banach’s FPT, Leray-Schauder’s nonlinear alternative and Krasnoselskii’s
FPT. For the benefit of calculation in this work, we will provide the constants:

Θ(χ, σ) =
(ψ(χ) − ψ(a))σ

ρσΓ(σ + 1)
, (3.4)

Λ = Θ(T, α) +
1
|Ω|

 m∑
i=1

|γi|Θ(ηi, α) +

n∑
j=1

|κ j|Θ(ξ j, α − β j) +

k∑
r=1

|σr|Θ(θr, α + δr)

 . (3.5)

3.1. Uniqueness property

Firstly, the uniqueness result for (1.11) will be stidied by applying Banach’s FPT.

Lemma 3.1. (Banach contraction principle [59]) Assume that B is a non-empty closed subset of a
Banach space E. Then any contraction mapping K from B into itself has a unique fixed point.

Theorem 3.2. Let f ∈ C(J × R4,R)so that:

(H1) there exist constants L1 > 0, L2 > 0, 0 < L3 < 1 so that

| f (t, u1, v1,w1, z1) − f (t, u2, v2,w2, z2)| ≤ L1(|u1 − u2| + |v1 − v2|) + L2|w1 − w2| + L3|z1 − z2|,

∀ui, vi, wi, zi ∈ R, i = 1, 2, t ∈ J .

AIMS Mathematics Volume 7, Issue 6, 9549–9576.



9555

If (
2L1 + L2Θ(T, ω)

1 − L3

)
Λ < 1, (3.6)

then the Caputo-PFIDE withMNCs (1.11) has a unique solution on J , where (3.4) and (3.5) refers to
Θ(T, ω) and Λ.

Proof. First, we will convert (1.11) into u = Ku, whereK is given as in (3.1). Clearly, the fixed points
of K are solutions to (1.11). By using the Banach’s FPT, we are going to prove that K has a FP which
is a unique solution of (1.11).

Define supt∈J | f (t, 0, 0, 0, 0)| := M1 < ∞ and setting Br1 := {u ∈ E : ‖u‖ ≤ r1} with

r1 ≥

M1Λ

1−L3
+ |A|
|Ω|

1 −
(

2L1+L2Θ(T,ω)
1−L3

)
Λ
, (3.7)

where Ω, Θ(T, ω) and Λ are given as in (2.4), (3.4) and (3.5). Clearly, Br1 is a bounded, closed and
convex subset of E. We have divided the method of the proof into two steps:
Step I. We prove that KBr1 ⊂ Br1 .

For each u ∈ Br1 , we obtain

|(Ku)(t)| ≤ ρIα,ψa+ |Fu(t)| +
e
ρ−1
ρ (ψ(t)−ψ(a))

|Ω|

(
|A| +

m∑
i=1

|γi|
ρIα,ψa+ |Fu(ηi)|

+

n∑
j=1

|κ j|
ρI
α−β j,ψ

a+ |Fu(ξ j)| +
k∑

r=1

|σr|
ρIα+δr ,ψ

a+ |Fu(θr)|
)
.

From the assumption (H1), it follows that

|Fu(t)| ≤ | f (t, u(t), u(λt), ρIω,ψa+ [u(λt)], Fu(λt)) − f (t, 0, 0, 0, 0)| + | f (t, 0, 0, 0, 0)|
≤ L1 (|u(t)| + |u(λt)|) + L2|

ρIω,ψa+ [u(λt)]| + L3|Fu(λt)| + M1

≤ 2L1‖u‖ + L2‖u‖ρI
ω,ψ
a+ [1](t) + L3‖Fu(·)‖ + M1

=

(
2L1 + L2

(ψ(T ) − ψ(a))ω

ρωΓ(ω + 1)

)
‖u‖ + L3‖Fu(·)‖ + M1.

Then
‖Fu(·)‖ ≤

(2L1 + L2Θ(T, ω))‖u‖ + M1

1 − L3
.

This implies that

|(Ku)(t)| ≤ ρIα,ψa+

(
(2L1 + L2Θ(T, ω))‖u‖ + M1

1 − L3

)
(t)

+
e
ρ−1
ρ (ψ(t)−ψ(a))

|Ω|

[
|A| +

m∑
i=1

|γi|
ρIα,ψa+

(
(2L1 + L2Θ(T, ω))‖u‖ + M1

1 − L3

)
(ηi)

+

n∑
j=1

|κ j|
ρI
α−β j,ψ

a+

(
(2L1 + L2Θ(T, ω))‖u‖ + M1

1 − L3

)
(ξ j)
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+

k∑
r=1

|σr|
ρIα+δr ,ψ

a+

(
(2L1 + L2Θ(T, ω))‖u‖ + M1

1 − L3

)
(θr)

]
.

By using the fact of 0 < e
ρ−1
ρ (ψ(t)−ψ(s))

≤ 1, a ≤ s < t ≤ T , it follows that

|(Ku)(t)| ≤
(
(2L1 + L2Θ(T, ω))‖u‖ + M1

1 − L3

) (
(ψ(T ) − ψ(a))α

ραΓ(α + 1)
+

1
|Ω|

[ m∑
i=1

|γi| (ψ(ηi) − ψ(a))α

ραΓ(α + 1)

+

n∑
j=1

|κ j|
(
ψ(ξ j) − ψ(a)

)α−β j

ρα−β jΓ(α − β j + 1)
+

k∑
r=1

|σr| (ψ(θr) − ψ(a))α+δr

ρα+δrΓ(α + δr + 1)

])
+
|A|
|Ω|

=

(
(2L1 + L2Θ(T, ω))‖u‖ + M1

1 − L3

) (
Θ(T, α) +

1
|Ω|

[ m∑
i=1

|γi|Θ(ηi, α)

+

n∑
j=1

|κ j|Θ(ξ j, α − β j) +

k∑
r=1

|σr|Θ(θr, α + δr)
])

+
|A|
|Ω|

=

(
2L1 + L2Θ(T, ω)

1 − L3

)
Λr1 +

M1Λ

1 − L3
+
|A|
|Ω|
≤ r1,

which implies that ‖Ku‖ ≤ r1. Thus, KBr1 ⊂ Br1 .
Step II. We prove that K : E → E is contraction.

For each u, v ∈ E, t ∈ J , we obtain

|(Ku)(t) − (Kv)(t)| ≤ ρIα,ψa+ |Fu − Fv|(T ) +
e
ρ−1
ρ

(
ψ(T )−ψ(a)

)
|Ω|

( m∑
i=1

|γi|
ρIα,ψa+ |Fu − Fv|(ηi)

+

n∑
j=1

|κ j|
ρI
α−β j,ψ

a+ |Fu − Fv|(ξ j) +

k∑
r=1

|σr|
ρIα+δr ,ψ

a+ |Fu − Fv|(θr)
)
. (3.8)

From (H1) again, we can compute that

|Fu(t) − Fv(t)| ≤
∣∣∣ f (t, u(t), u(λt), ρIω,ψa+ [u(λt)], Fu(λt)) − f (t, v(t), v(λt), ρIω,ψa+ [v(λt)], Fv(λt))

∣∣∣
≤ L1(|u(t) − v(t)| + |u(λt) − v(λt)|) + L2

ρIω,ψa+ |u(λt) − v(λt)| + L3|Fu(λt) − Fv(λt)|

≤ 2L1‖u − v‖ + L2

(
ψ(T ) − ψ(a)

)ω
ρωΓ(ω + 1)

‖u − v‖ + L3‖Fu(·) − Fv(·)‖.

Then

‖Fu(·) − Fv(·)‖ ≤
(
2L1 + L2Θ(T, ω)

1 − L3

)
‖u − v‖. (3.9)

By inserting (3.9) into (3.8), one has

|(Ku)(t) − (Kv)(t)| ≤ ρIα,ψa+

((
2L1 + L2Θ(T, ω)

1 − L3

)
‖u − v‖

)
(T )

+
e
ρ−1
ρ

(
ψ(T )−ψ(a)

)
|Ω|

[ m∑
i=1

|γi|
ρIα,ψa+

((
2L1 + L2Θ(T, ω)

1 − L3

)
‖u − v‖

)
(ηi)
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+

n∑
j=1

|κ j|
ρI
α−β j,ψ

a+

((
2L1 + L2Θ(T, ω)

1 − L3

)
‖u − v‖

)
(ξ j)

+

k∑
r=1

|σr|
ρIα+δr ,ψ

a+

((
2L1 + L2Θ(T, ω)

1 − L3

)
‖u − v‖

)
(θr)

]
≤

(
2L1 + L2Θ(T, ω)

1 − L3

) [
(ψ(T ) − ψ(a))α

ραΓ(α + 1)
+

1
|Ω|

( m∑
i=1

|γi| (ψ(ηi) − ψ(a))α

ραΓ(α + 1)

+

n∑
j=1

|κ j|
(
ψ(ξ j) − ψ(a)

)α−β j

ρα−β jΓ(α − β j + 1)
+

k∑
r=1

|σr| (ψ(θr) − ψ(a))α+δr

ρα+δrΓ(α + δr + 1)

)]
‖u − v‖

=

(
2L1 + L2Θ(T, ω)

1 − L3

)
Λ‖u − v‖,

also, ‖Ku−Kv‖ ≤ (2L1+L2Θ(T, ω))/(1−L3)Λ‖u−v‖. It follows from [(2L1+L2Θ(T, ω))/(1−L3)]Λ < 1,
that K is contraction. Then, (from Lemma 3.1), we conclude that K has the unique fixed point, that is
the unique solution to (1.11) in E. �

3.2. Existence property via Leray-Schauder’s type

Next, Leray-Schauder’s nonlinear alternative is employed to analyze in the second property.

Lemma 3.3. (Leray-Schauder’s nonlinear alternative [59]) Assume that E is a Banach space, C is
a closed and convex subset of M, X is an open subset of C and 0 ∈ X. Assume that F : X → C is
continuous, compact (that is, F(X) is a relatively compact subset of C) map. Then either (i) F has a
fixed point in X, or (ii) there is x ∈ ∂X (the boundary of X in C) and % ∈ (0, 1) with z = %F(z).

Theorem 3.4. Assume that f ∈ C(J × R4,R) so that:

(H2) there exists ΨC(R+,R+) and Ψ is non-decreasing, p, f ∈ C(J ,R+), q ∈ C(J ,R+ ∪ {0}) so that

| f (t, u, v,w, z)| ≤ p(t)Ψ(|u| + |v|) + f (t)|w| + q(t)|z|, ∀t ∈ J , ∀u, v,w, z ∈ R,

where p0 = supt∈J {p(t)}, f0 = supt∈J { f (t)}, q0 = supt∈J {q(t)} < 1.
(H3) there exists a constant N > 0 so that

N
|A|
|Ω|

+
(

f0Θ(T,ω)N+2p0Ψ(N)
1−q0

)
Λ
> 1,

where Θ(T, ω) and Λ are given as in (3.4) and (3.5).

Then the Caputo-PFIDE withMNCs (1.11) has at least one solution.

Proof. Assume that K is given as in (3.1). Next, we are going to prove that K maps bounded sets
(balls) into bounded sets in E. For any r2 > 0, assume that Br2 := {u ∈ E : ‖u‖ ≤ r2} ∈ E, we have, for
each t ∈ J ,

|(Ku)(t)| ≤ ρIα,ψa+ |Fu(T )| +
e
ρ−1
ρ (ψ(T )−ψ(a))

|Ω|

(
|A| +

m∑
i=1

|γi|
ρIα,ψa+ |Fu(ηi)| +

n∑
j=1

|κ j|
ρI
α−β j,ψ

a+ |Fu(ξ j)|
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+

k∑
r=1

|σr|
ρIα+δr ,ψ

a+ |Fu(θr)|
)
.

It follows from (H2) that∣∣∣CρDα,ψa+ [u(t)]
∣∣∣ ≤ p(t)Ψ(|u(t)| + |u(λt)|) + f (t)|ρIω,ψa+ [u(λt)]| + q(t)

∣∣∣CρDα,ψa+ [u(λt)]
∣∣∣

≤ p(t)Ψ(2‖u‖) + f (t)
(ψ(T ) − ψ(a))ω

ρωΓ(ω + 1)
‖u‖ + q(t)

∣∣∣CρDα,ψa+ [u(t)]
∣∣∣ .

Then, we have ∣∣∣CρDα,ψa+ u(t)
∣∣∣ ≤ p(t)Ψ(2‖u‖) + f (t)Θ(T, ω)‖u‖

1 − q(t)
.

For any a ≤ s < t ≤ T , we have 0 < e
ρ−1
ρ (ψ(t)−ψ(s))

≤ 1, then

|(Ku)(t)| ≤
[
(ψ(T ) − ψ(a))α

ραΓ(α + 1)
+

1
|Ω|

( m∑
i=1

|γi| (ψ(ηi) − ψ(a))α

ραΓ(α + 1)
+

n∑
j=1

|κ j|
(
ψ(ξ j) − ψ(a)

)α−β j

ρα−β jΓ(α − β j + 1)

+

k∑
r=1

|σr| (ψ(θr) − ψ(a))α+δr

ρα+δrΓ(α + δr + 1)

)] (
p0Ψ(2‖u‖) + f0Θ(T, ω)‖u‖

1 − q0

)
+
|A|
|Ω|

=

(
2p0Ψ(‖u‖) + f0Θ(T, ω)‖u‖

1 − q0

)
Λ +

|A|
|Ω|

,

which leads to

‖Ku‖ ≤
(
2p0Ψ(‖u‖) + f0Θ(T, ω)‖u‖

1 − q0

)
Λ +

|A|
|Ω|

:= N.

Now, we will prove that K maps bounded sets into equicontinuous sets of E.
Given τ1 < τ2 where τ1, τ2 ∈ J , and for each u ∈ Br2 . Then, we obtain

|(Ku)(τ2) − (Ku)(τ1)|

≤
∣∣∣ρIα,ψa+ [Fu(τ2)] − ρIα,ψa+ [Fu(τ1)]

∣∣∣ +

∣∣∣∣e ρ−1
ρ (ψ(τ2)−ψ(a))

− e
ρ−1
ρ (ψ(τ1)−ψ(a))

∣∣∣∣
|Ω|

(
|A| +

m∑
i=1

|γi|
ρIα,ψa+ |Fu(ηi)|

+

n∑
j=1

|κ j|
ρI
α−β j,ψ

a+ |Fu(ξ j)| +
k∑

r=1

|σr|
ρIα+δr ,ψ

a+ |Fu(θr)|
)

≤

(
2p0Ψ(‖u‖) + f0Θ(T, ω)‖u‖

1 − q0

) (
1

ραΓ(α)

∫ τ2

τ1

ρHα−1
ψ (τ2, s)ψ′(s)ds

+
1

ραΓ(α)

∫ τ1

a

∣∣∣ρHα−1
ψ (τ2, s) − ρHα−1

ψ (τ1, s)
∣∣∣ψ′(s)ds

)

+

∣∣∣∣e ρ−1
ρ (ψ(τ2)−ψ(a))

− e
ρ−1
ρ (ψ(τ1)−ψ(a))

∣∣∣∣
|Ω|

(
2p0Ψ(‖u‖) + f0Θ(T, ω)‖u‖

1 − q0

)

×

|A| + m∑
i=1

|γi| (ψ(ηi) − ψ(a))α

ραΓ(α + 1)
+

n∑
j=1

|κ j|
(
ψ(ξ j) − ψ(a)

)α−β j

ρα−β jΓ(α − β j + 1)
+

k∑
r=1

|σr| (ψ(θr) − ψ(a))α+δr

ρα−δrΓ(α + δr + 1)
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≤

[
1

ραΓ(α + 1)

(
|(ψ(τ2) − ψ(a))α − (ψ(τ1) − ψ(a))α| + 2 (ψ(τ2) − ψ(τ1))α

)
+

1
|Ω|

|A| + m∑
i=1

|γi|Θ(ηi, α) +

n∑
j=1

|κ j|Θ(ξ j, α − β j) +

k∑
r=1

|σr|Θ(θr, α + δr)


×

∣∣∣∣e ρ−1
ρ (ψ(τ2)−ψ(a))

− e
ρ−1
ρ (ψ(τ1)−ψ(a))

∣∣∣∣ ][2p0Ψ(‖u‖) + f0Θ(T, ω)‖u‖
1 − q0

]
.

Clearly, which independent of u ∈ Br2 the above inequality, |(Ku)(τ2) − (Ku)(τ1)| → 0 as τ2 → τ1.
Hence, by the Arzelá-Ascoli property, K : E → E is completely continuous.

Next, we will prove that there is B ⊆ E where B is an open set, u , %K(u) for % ∈ (0, 1) and u ∈ ∂B.
Assume that u ∈ E is a solution of u = %Ku, % ∈ (0, 1). Hence, it follows that

|u(t)| = |%(Ku)(t)|

≤
|A|
|Ω|

+

(
2p0Ψ(‖u‖) + f0Θ(T, ω)‖u‖

1 − q0

)
×

Θ(T, α) +
1
|Ω|

 m∑
i=1

|γi|Θ(ηi, α) +

n∑
j=1

|κ j|Θ(ξ j, α − β j) +

k∑
r=1

|σr|Θ(θr, α + δr)




=
|A|
|Ω|

+

(
2p0Ψ(‖u‖) + f0Θ(T, ω)‖u‖

1 − q0

)
Λ,

which yields

‖u‖ ≤
|A|
|Ω|

+

(
2p0Ψ(‖u‖) + f0Θ(T, ω)‖u‖

1 − q0

)
Λ.

Consequently,
‖u‖

|A|
|Ω|

+
(

2p0Ψ(‖u‖)+ f0Θ(T,ω)‖u‖
1−q0

)
Λ
≤ 1.

By (H3), there is N so that ‖u‖ , N. Define

B = {u ∈ E : ‖u‖ < N} and Q = B ∩ Br2 .

Note that K : Q → E is continuous and completely continuous. By the option of Q, there is no
u ∈ ∂Q so that u = %Ku, ∃% ∈ (0, 1). Thus, (by Lemma 3.3), we conclude that K has fixed point u ∈ Q
which verifies that (1.11) has at least one solution. �

3.3. Existence property via Krasnoselskii’s fixed point theorem

By applying Krasnoselskii’s FPT, the existence property will be achieved.

Lemma 3.5. (Krasnoselskii’s fixed point theorem [60]) Let M be a closed, bounded, convex and
nonempty subset of a Banach space. Let K1, K2 be the operators such that (i) K1x+ K2y ∈ M whenever
x, y ∈ M; (ii) K1 is compact and continuous; (iii) K2 is contraction mapping. Then there exists z ∈ M
such that z = K1z + K2z.

Theorem 3.6. Suppose that (H1) holds and f ∈ C(J × R4,R) so that:
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(H4) ∃g ∈ C(J ,R+) so that

f (t, u, v,w, z)| ≤ g(t), ∀(t, u, v,w, z) ∈ J × R4.

If (
2L1 + L2Θ(T, ω)

1 − L3

)
(Λ − Θ(T, α)) < 1, (3.10)

then the Caputo-PFIDE withMNCs (1.11) has at least one solution.

Proof. Define supt∈J |g(t)| = ‖g‖ and picking

r3 ≥
|A|
|Ω|

+ ‖g‖Λ, (3.11)

we consider Br3 = {u ∈ E : ‖u‖ ≤ r3}. Define K1 and K2 on Br3 as (3.2) and (3.3).
For any u, v ∈ Br3 , we obtain

|(K1u)(t) + (K2v)(t)|

≤ sup
t∈J

{
ρIα,ψa+ |Fu(t)| +

e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
|Ω|

(
|A| +

m∑
i=1

|γi|
ρIα,ψa+ |Fv(ηi)| +

n∑
j=1

|κ j|
ρI
α−β j,ψ

a+ |Fv(ξ j)|

+

k∑
r=1

|σr|
ρIα+δr ,ψ

a+ |Fv(θr)|
)}

≤
|A|
|Ω|

+ ‖g‖
{(
ψ(T ) − ψ(a)

)α
ραΓ(α + 1)

+
1
|Ω|

( m∑
i=1

|γi|
(
ψ(ηi) − ψ(a)

)α
ραΓ(α + 1)

+

n∑
j=1

|κ j|
(
ψ(ξ j) − ψ(a)

)α−β j

ρα−β jΓ(α − β j + 1)

+

k∑
r=1

|σr|
(
ψ(θr) − ψ(a)

)α+δr

ρα+δrΓ(α + δr + 1)

)}
=
|A|
|Ω|

+ ‖g‖Λ ≤ r3.

This implies that K1u +K2v ∈ Br3 , which verifies Lemma 3.5 (i).
Next, we are going to show that Lemma 3.5 (ii) is verified.
Assume that un is a sequence so that un → u ∈ E as n→ ∞. Hence, we get

|(K1un)(t) − (K1u)(t)| ≤ ρIα,ψa+ |Fun − Fu|(T ) ≤ Θ(T, α)‖Fun − Fu‖.

Since f is continuous, verifies that Fu is also continuous. By the Lebesgue dominated convergent
theorem, we have

|(K1un)(t) − (K1u)(t)| → 0 as n→ ∞.

Therefore,
‖K1un − K1u‖ → 0 as n→ ∞.

Thus, implies that K1u is continuous. Also, the set K1Br3 is uniformly bounded as

‖K1u‖ ≤ Θ(T, α)‖g‖.
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Next step, we will show the compactness of K1.
Define sup{| f (t, u, v,w, z)|; (t, u, v,w, z) ∈ J × R4} = f ∗ < ∞, thus, for each τ1, τ2 ∈ J with τ1 ≤ τ2,

it follows that

|(K1u)(τ2) − (K1u)(τ1)| =
∣∣∣ρIα,ψa+ [Fu(τ2)] − ρIα,ψa+ [Fu(τ1)]

∣∣∣
≤

1
ραΓ(α + 1)

(
|(ψ(τ2) − ψ(a))α − (ψ(τ1) − ψ(a))α| + 2 (ψ(τ2) − ψ(τ1))α

)
f ∗.

Clearly, the right-hand side of the above inequality is independent of u and
|(K1u)(τ2) − (K1u)(τ1)| → 0, as τ2 → τ1. Hence, the set K1Br3 is equicontinuous, also K1

maps bounded subsets into relatively compact subsets, which implies that K1Br3 is relatively compact.
By the Arzelá-Ascoli theorem, then K1 is compact on Br3 .

Finally, we are going to show that K2 is contraction.
For each u, v ∈ Br3 and t ∈ J , we get

|(K2u)(t) − (K2v)(t)|

≤
1
|Ω|

( m∑
i=1

|γi|
ρIα,ψa+ |Fu − Fv|(ηi) +

n∑
j=1

|κ j|
ρI
α−β j,ψ

a+ |Fu − Fv|(ξ j) +

k∑
r=1

|σr|
ρIα+δr ,ψ

a+ |Fu − Fv|(θr)
)

≤
1
|Ω|

( m∑
i=1

|γi| (ψ(ηi) − ψ(a))α

ραΓ(α + 1)
+

n∑
j=1

|κ j|
(
ψ(ξ j) − ψ(a)

)α−β j

ρα−β jΓ(α − β j + 1)
+

k∑
r=1

|σr| (ψ(θr) − ψ(a))α+δr

ρα+δrΓ(α + δr + 1)

)
×

(
2L1 + L2Θ(T, ω)

1 − L3

)
‖u − v‖

=

(
2L1 + L2Θ(T, ω)

1 − L3

)
(Λ − Θ(T, α)) ‖u − v‖.

Since (3.10) holds, implies that K2 is contraction and also Lemma 3.5 (iii) verifies.
Therefore, the assumptions of Lemma 3.5 are verified. Then, (by Lemma 3.5) which verifies

that (1.11) has at least one solution. �

4. Stability results

This part is proving different kinds of US like HU stable, GHU stable, HUR stable and GHUR
stable of the Caputo-PFIDE withMNCs (1.11).

Definition 4.1. The Caputo-PFIDE withMNCs (1.11) is called HU stable if there is a constant ∆ f > 0
so that for every ε > 0 and the solution z ∈ E of∣∣∣CρDα,ψa+ [z(t)] − f (t, z(t), z(λt), ρIω,ψa+ [z(λt)], CρDα,ψa+ [z(λt)])

∣∣∣ ≤ ε, (4.1)

there exists the solution u ∈ E of (1.11) so that

|z(t) − u(t)| ≤ ∆ f ε, t ∈ J . (4.2)
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Definition 4.2. The Caputo-PFIDE with MNCs (1.11) is called GHU stable if there is a function
Φ ∈ C(R+,R+) via Φ(0) = 0 so that, for every solution z ∈ E of∣∣∣CρDα,ψa+ [z(t)] − f (t, z(t), z(λt), ρIω,ψa+ [z(λt)], CρDα,ψa+ [z(λt)])

∣∣∣ ≤ εΦ(t), (4.3)

there is the solution u ∈ E of (1.11) so that

|z(t) − u(t)| ≤ Φ(ε), t ∈ J . (4.4)

Definition 4.3. The Caputo-PFIDE with MNCs (1.11) is called HUR stable with respect to Φ ∈

C(J ,R+) if there is a constant ∆ f ,Φ > 0 such that for every ε > 0 and for any the solution z ∈ E
of (4.3) there is the solution u ∈ E of (1.11) so that

|z(t) − u(t)| ≤ ∆ f ,ΦεΦ(t), t ∈ J . (4.5)

Definition 4.4. The Caputo-PFIDE with MNCs (1.11) is called GHUR stable with respect to Φ ∈

C(J ,R+) if there is a constant ∆ f ,Φ > 0 so that for any the solution z ∈ E of∣∣∣CρDα,ψa+ [z(t)] − f (t, z(t), z(λt), ρIω,ψa+ [z(λt)], CρDα,ψa+ [z(λt)])
∣∣∣ ≤ Φ(t), (4.6)

there is the solution u ∈ E of (1.11) so that

|z(t) − u(t)| ≤ ∆ f ,ΦΦ(t), t ∈ J . (4.7)

Remark 4.5. Cleary, (i) Definition 4.1 ⇒ Definition 4.2; (ii) Definition 4.3 ⇒ Definition 4.4; (iii)
Definition 4.3 for Φ(t) = 1⇒ Definition 4.1.

Remark 4.6. z ∈ E is the solution of (4.1) if and only if there is the function w ∈ E (which depends
on z) so that: (i) |w(t)| ≤ ε, ∀t ∈ J; (ii) CρDα,ψa+ [z(t)] = Fz(t) + w(t), t ∈ J .

Remark 4.7. z ∈ E is the solution of (4.3) if and only if there is the function v ∈ E (which depends
on z) so that: (i) |v(t)| ≤ εΦ(t), ∀t ∈ J; (ii) CρDα,ψa+ [z(t)] = Fz(t) + v(t), t ∈ J .

4.1. HU stability and GHU stability

From Remark 4.6, the solution of

CρDα,ψa+ [z(t)] = f (t, z(t), z(λt), ρIω,ψa+ [z(λt)], CρDα,ψa+ [z(λt)]) + w(t), t ∈ J ,

can be rewritten as

z(t) = ρIα,ψa+ [Fz(t)] +
e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
Ω

(
A −

m∑
i=1

γi
ρIα,ψa+ [Fz(ηi)] −

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [Fz(ξ j)]

−

k∑
r=1

σr
ρIα+δr ,ψ

a+ [Fz(θr)]
)

+ ρIα,ψa+ [w(t)] −
e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
Ω

( m∑
i=1

γi
ρIα,ψa+ [w(ηi)]

+

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [w(ξ j)] +

k∑
r=1

σr
ρIα+δr ,ψ

a+ [w(θr)]
)
. (4.8)

Firstly, the key lemma that will be applied in the presents of HU stable and GHU stable.
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Lemma 4.8. Assume that 0 < ε, ρ ≤ 1. If z ∈ E verifies (4.1), hence z is the solution of

|z(t) − (Kz)(t)| ≤ Λε, (4.9)

where Λ is given as in (3.5).

Proof. By Remark 4.6 with (4.8), it follows that

|z(t) − (Kz)(t)| =

∣∣∣∣∣∣ρIα,ψa+ [w(t)] −
e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
Ω

( m∑
i=1

γi
ρIα,ψa+ [w(ηi)] +

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [w(ξ j)]

+

k∑
r=1

σr
ρIα+δr ,ψ

a+ [w(θr)]
)∣∣∣∣∣∣

≤ ρIα,ψa+ |w(T )| +
1
|Ω|

( m∑
i=1

|γi|
ρIα,ψa+ |w(ηi)| +

n∑
j=1

|κ j|
ρI
α−β j,ψ

a+ |w(ξ j)|

+

k∑
r=1

|σr|
ρIα+δr ,ψ

a+ |w(θr)|
)

≤

[(
ψ(T ) − ψ(a)

)α
ραΓ(α + 1)

+
1
|Ω|

( m∑
i=1

|γi|
(
ψ(ηi) − ψ(a)

)α
ραΓ(α + 1)

+

n∑
j=1

|κ j|
(
ψ(ξ j) − ψ(a)

)α−β j

ρα−β jΓ(α − β j + 1)

+

k∑
r=1

|σr|
(
ψ(θr) − ψ(a)

)α+δr

ρα+δrΓ(α + δr + 1)

)]
ε

= Λε,

where Λ is given by (3.5), from which (4.9) is achieved. �

Next, we will show the HU and GHU stability results.

Theorem 4.9. Suppose that f ∈ C(J × R4,R). If (H1) is verified with (3.6) trues. Hence the Caputo-
PFIDE withMNCs (1.11) is HU stable as well as GHU stable on J .

Proof. Assume that z ∈ E is the solution of (4.1) and assume that u is the unique solution of
CρDα,ψa+ [u(t)] = f (t, u(t), u(λt), ρIω,ψa+ [u(λt)], CρDα,ψa+ [u(λt)]), t ∈ (a,T ), λ ∈ (0, 1),

m∑
i=1

γiu(ηi) +

n∑
j=1

κ j
CρD

β j,ψ

a+ [u(ξ j)] +

k∑
r=1

σr
ρIδr ,ψ

a+ [u(θr)] = A.

By using |x − y| ≤ |x| + |y| with Lemma 4.8, one has

|z(t) − u(t)| =

∣∣∣∣∣∣z(t) − ρIα,ψa+ [Fu(t)] −
e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
Ω

(
A −

m∑
i=1

γi
ρIα,ψa+ [Fu(ηi)]

−

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [Fu(ξ j)] −
k∑

r=1

σr
ρIα+δr ,ψ

a+ [Fu(θr)]
)∣∣∣∣∣∣

AIMS Mathematics Volume 7, Issue 6, 9549–9576.



9564

= |z(t) − (Kz)(t) + (Kz)(t) − (Ku)(t)|
≤ |z(t) − (Kz)(t)| + |(Kz)(t) − (Ku)(t)|

≤ Λε +

(
2L1 + L2Θ(T, ω)

1 − L3

)
Λ|z(t) − u(t)|,

where Λ is given as in (3.5). This offers |z(t) − u(t)| ≤ ∆ f ε, where

∆ f =
Λ

1 −
(

2L1+L2Θ(T,ω)
1−L3

)
Λ
. (4.10)

Then, the Caputo-PFIDE with MNCs (1.11) is HU stable. In addition, if we input Φ(ε) = ∆ f ε via
Φ(0) = 0, hence (1.11) is GHU stable. �

4.2. The HUR stability and GHUR stability

Thanks of Remark 4.7, the solution

CρDα,ψa+ [z(t)] = f (t, z(t), z(λt), ρIω,ψa+ [z(λt)], CρDα,ψa+ [z(λt)]) + v(t), t ∈ (a,T ],

can be rewritten as

z(t) = ρIα,ψa+ [Fz(t)] +
e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
Ω

(
A −

m∑
i=1

γi
ρIα,ψa+ [Fz(ηi)] −

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [Fz(ξ j)]

−

k∑
r=1

σr
ρIα+δr ,ψ

a+ [Fz(θr)]
)

+ ρIα,ψa+ [v(t)] −
e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
Ω

( m∑
i=1

γi
ρIα,ψa+ [v(ηi)]

+

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [v(ξ j)] +

k∑
r=1

σr
ρIα+δr ,ψ

a+ [v(θr)]
)
. (4.11)

For the next proving, we state the following assumption:

(H5) there is an increasing function Φ ∈ C(J ,R+) and there is a constant nΦ > 0, so that, for each
t ∈ J,

ρIα,ψa+ [Φ(t)] ≤ nΦΦ(t). (4.12)

Lemma 4.10. Assume that z ∈ E is the solution of (4.3). Hence, z verifies

|z(t) − (Kz)(t)| ≤ ΛεnΦΦ(t), 0 < ε ≤ 1. (4.13)

where Λ is given as in (3.5).

Proof. From (4.11), we have

|z(t) − (Kz)(t)|

=

∣∣∣∣∣∣ρIα,ψa+ v(t) −
e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
Ω

( m∑
i=1

γi
ρIα,ψa+ [v(ηi)] +

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [v(ξ j)] +

k∑
r=1

σr
ρIα+δr ,ψ

a+ [v(θr)]
)∣∣∣∣∣∣
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≤

[
ρIα,ψa+ [Φ(T )] +

1
|Ω|

( m∑
i=1

|γi|
ρIα,ψa+ [Φ(ηi)] +

n∑
j=1

|κ j|
ρI
α−β j,ψ

a+ [Φ(ξ j)] +

k∑
r=1

|σr|
ρIα+δr ,ψ

a+ [Φ(θr)]
)]
ε

≤

[(
ψ(T ) − ψ(a)

)α
ραΓ(α + 1)

+
1
|Ω|

( m∑
i=1

|γi|
(
ψ(ηi) − ψ(a)

)α
ραΓ(α + 1)

+

n∑
j=1

|κ j|
(
ψ(ξ j) − ψ(a)

)α−β j

ρα−β jΓ(α − β j + 1)

+

k∑
r=1

|σr|
(
ψ(θr) − ψ(a)big)α+δr

ρα+δrΓ(α + δr + 1)

)]
εnΦΦ(t)

= ΛεnΦΦ(t),

where Λ is given by (3.5), which leads to (4.13). �

Finally, we are going to show HUR and GHUR stability results.

Theorem 4.11. Suppose f ∈ C(J × R4,R). If (H1) is satisfied with (3.6) trues. Hence, the Caputo-
PFIDE withMNCs (1.11) is HUR stable as well as GHUR stable on J .

Proof. Assume that ε > 0. Suppose that z ∈ E is the solution of (4.6) and u is the unique solution
of (1.11). By using the triangle inequality, Lemma 4.8 and (4.11), we estamate that

|z(t) − u(t)| =

∣∣∣∣∣∣z(t) − ρIα,ψa+ [Fu(t)] −
e
ρ−1
ρ

(
ψ(t)−ψ(a)

)
Ω

(
A −

m∑
i=1

γi
ρIα,ψa+ [Fu(ηi)] −

n∑
j=1

κ j
ρI
α−β j,ψ

a+ [Fu(ξ j)]

−

k∑
r=1

σr
ρIα+δr ,ψ

a+ [Fu(θr)]
)∣∣∣∣∣∣

= |z(t) − (Kz)(t) + (Kz)(t) − (Ku)(t)|
≤ |z(t) − (Kz)(t)| + |(Kz)(t) − (K x)(t)|

≤ ΛεnΦΦ(t) +

(
2L1 + L2Θ(T, ω)

1 − L3

)
Λ|z(t) − u(t)|,

where Λ is given as in (3.5), verifies that |z(t) − u(t)| ≤ ∆ f ,ΦεΦ(t), where

∆ f ,Φ :=
ΛnΦ

1 −
(

2L1+L2Θ(T,ω)
1−L3

)
Λ
.

Then, the Caputo-PFIDE with MNCs (1.11) is HUR stable. In addition, if we input Φ(t) = εΦ(t)
with Φ(0) = 0, then (1.11) is GHUR stable. �

5. Numerical examples

This part shows numerical instances that demonstrate the exactness and applicability of our main
results.
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Example 5.1. Discussion the following nonlinear Caputo-PFIDE withMNCs of the form:
C 2

3D
1
2 ,
√

t

0+ [u(t)] = f
t, u(t), u

(
t
√

3

)
,

2
3 I

3
4 ,
√

t
0+

[
u
(

t
√

3

)]
, C 2

3D
1
2 ,
√

t
[
u
(

t√
3

)]
0+

 , t ∈ (0, 1),

2∑
i=1

(
i + 1

2

)
u
(
2i + 1

5

)
+

3∑
j=1

(
2 j − 1

5

)
C 2

3D
2 j+1

20 ,
√

t

0+

[
u
( j
4

)]
+

2∑
r=1

( r
3

)
2
3 I

r
r+1 ,
√

t

0+

[
u
(
r + 1

4

)]
= 1.

(5.1)

Here, α = 1/2, ρ = 2/3, ψ(t) =
√

t, λ = 1/
√

3, ω = 3/4, a = 0, T = 1, m = 2, n = 3, k = 2,
γi = (i + 1)/2, ηi = (2i + 1)/5, i = 1, 2, κ j = (2 j − 1)/5, β j = (2 j + 1)/20, ξ j = j/4, j = 1, 2, 3,
σr = r/3, δr = r/(r + 1), θr = (r + 1)/4, r = 1, 2. By using Python, we obtain that Ω ≈ 2.4309 , 0 and
Λ ≈ 4.042711.

(I) If we set the nonlinear function

f (t, u, v,w) =
1

3t+3(2 + cos 2t)

(
|u|

1 + |u|
+
|v|

1 + |v|
+
|w|

1 + |w|
+
|z|

1 + |z|

)
.

For any ui, vi, wi, zi ∈ R, i = 1, 2 and t ∈ [0, 1], one has

| f (t, u1, v1,w1, z1) − f (t, u2, v2,w2, z2)| ≤
1

3t+3
(|u1 − u2| + |v1 − v2| + |w1 − w2| + |z1 − z2|) .

The assumption (H1) is satisfied with L1 = L2 = L3 = 1
27 . Hence(

2L1 + L2Θ(T, ω)
1 − L3

)
Λ ≈ 0.540287 < 1.

All conditions of Theorem 3.2 are verified. Hence, the nonlinear Caputo-PFIDE withMNCs (5.1)
has a unique solution on [0, 1]. Moreover, we obtain

∆ f =
Λ

1 −
(

2L1+L2Θ(T,ω)
1−L3

)
Λ
≈ 8.793988 > 0.

Hence, from Theorem 4.9, the nonlinear Caputo-PFIDE with MNCs (5.1) is HU stable and also
GHU stable on [0, 1]. In addition, by taking Φ(t) = e

ρ−1
ρ ψ(t) (ψ(t) − ψ(0)), we have

2
3 I

1
2 ,ψ

0+ [Φ(t)] =
2
√

2
√

3π
e−0.5ψ(t) (ψ(t) − ψ(0))

3
2 ≤

2
√

2
√

3π
(ψ(t) − ψ(0))

1
2 Φ(t).

Thus, (4.12) is satisfied with nΦ = 2
√

2
√

3π
> 0. Then, we have

∆ f ,Φ :=
ΛnΦ

1 −
(

2L1+L2Θ(T,ω)
1−L3

)
Λ
≈ 8.102058 > 0.

Hence, from Theorem 4.11, the nonlinear Caputo-PFIDE with MNCs (5.1) is HUR stable and
also GHUR stable.
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(II) If we take the nonlinear function

f (t, u, v,w) =
1

4t+2

(
|u| + |v|

1 + |u| + |v|
+

1
2

)
+

1
2t+3

(
|w| + |z|

1 + |w| + |z|
+

1
2

)
,

we have

| f (t, u, v,w, z)| ≤
1

4t+2

(
|u| + |v| +

1
2

)
+

1
2t+3

(
|w| + |z| +

1
2

)
.

From the above inequality with (H2)–(H3), we get that p(t) = 1/4t+2, Ψ (|u| + |v|) = |u| + |v| + 1/2
and h(t) = q(t) = 1/2t+3. So, we have p0 = 1/16 and h0 = q0 = 1/8. From all the datas, we can
compute that the constant N > 0.432489. All assumptions of Theorem 3.4 are verified. Hence,
the nonlinear Caputo-PFIDE withMNCs (5.1) has at least one solution on [0, 1]. Moreover,

∆ f :=
Λ

1 −
(

2L1+L2Θ(T,ω)
1−L3

)
Λ
≈ 63.662781 > 0,

Hence, from Theorem 4.9, the nonlinear Caputo-PFIDE with MNCs 5.1 is HU stable and also
GHU stable on [0, 1]. In addition, by taking Φ(t) = e

ρ−1
ρ ψ(t) (ψ(t) − ψ(0))

1
2 , we have

2
3 I

1
2 ,ψ

0+ [Φ(t)] =

√
3π

2
√

2
e−0.5ψ(t) (ψ(t) − ψ(0)) ≤

√
3π

2
√

2
(ψ(t) − ψ(0))

1
2 Φ(t).

Thus, (4.12) is satisfied with nΦ =
√

3π
2
√

2
> 0. Then, we have

∆ f ,Φ :=
ΛnΦ

1 −
(

2L1+L2Θ(T,ω)
1−L3

)
Λ
≈ 69.0997 > 0,

Hence, from Theorem 4.11, the nonlinear Caputo-PFIDE withMNCs 5.1 is HUR stable and also
GHUR stable on [0, 1].

(III) If we set the nonlinear function

f (t, u, v,w) =
1

4t+2

(
|u| + |v|

1 + |u| + |v|

)
+

1
2t+3

(
|w| + |z|

1 + |w| + |z|

)
.

For ui, vi, wi, zi ∈ R, i = 1, 2 and t ∈ [0, 1], we have

| f (t, u1, v1,w1, z1) − f (t, u2, v2,w2, z2)| ≤
1

4t+2
(|u1 − u2| + |v1 − v2|) +

1
2t+3

(|w1 − w2| + |z1 − z2|) .

The assumption (H4) is satisfied with L1 = L2 = 1
16 , L3 = 1

8 and

| f (t, u, v,w, z)| ≤
1

4t+2 +
1

2t+3 ,

which yields that

g(t) =
1

4t+2 +
1

2t+3 .
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Then (
2L1 + L2Θ(T, ω)

1 − L3

)
(Λ − Θ(T, α)) ≈ 0.660387 < 1.

All assumptions of Theorem 3.6 are verified. Hence the nonlinear Caputo-PFIDE with
MNCs (5.1) has at least one solution on [0, 1].
Furthermore, we get

∆ f =
Λ

1 −
(

2L1+L2Θ(T,ω)
1−L3

)
Λ
≈ 43.1392148 > 0.

Hence, from Theorem 4.9, the nonlinear Caputo-PFIDE with MNCs (5.1) is HU stable and also
GHU stable on [0, 1]. In addition, by taking Φ(t) = e

ρ−1
ρ ψ(t) (ψ(t) − ψ(0))2, we have

2
3 I

1
2 ,ψ

0+ [Φ(t)] =
8
√

6
15
√
π

e−0.5ψ(t) (ψ(t) − ψ(0))
5
2 ≤

8
√

6
15
√
π

(ψ(t) − ψ(0))
1
2 Φ(t).

Thus, (4.12) is satisfied with nΦ = 8
√

6
15
√
π
> 0. Then, we have

∆ f ,Φ :=
ΛnΦ

1 −
(

2L1+L2Θ(T,ω)
1−L3

)
Λ
≈ 31.79594 > 0.

Hence, from Theorem 4.11, the nonlinear Caputo-PFIDE with MNCs (5.1) is HUR stable and
also GHUR stable on [0, 1].

Example 5.2. Discussion the following linear Caputo-PFIDE withMNCs of the form:
C 2

3D
α,ψ(t)

0+ [u(t)] = e
−1
2 ψ(t)(ψ(t) − ψ(0)

) 1
2 , t ∈ (0, 1),

2∑
i=1

(
i + 1

2

)
u
(
2i + 1

5

)
+

3∑
j=1

(
2 j − 1

5

)
C 2

3D
2 j+1

20 ,
√

t

0+

[
u
( j
4

)]
+

2∑
r=1

( r
3

)
2
3 I

r
r+1 ,
√

t

0+

[
u
(
r + 1

4

)]
= 1.

(5.2)

By Lemma 2.1, the implicit solution of the problem (5.2)

u(t) =
Γ(3

2 )

( 2
3 )αΓ( 3

2 + α)
e−

1
2ψ(t)(ψ(t) − ψ(0)

) 1
2 +α

+
e−

1
2

(
ψ(t)−ψ(0)

)
Ω

(
1 −

2∑
i=1

( i + 1
2

)
e−

1
2ψ
(

2i+1
5

)(
ψ
(2i + 1

5

)
− ψ(0)

) 1
2

−

3∑
j=1

(2 j − 1
5

) Γ(3
2 )

( 2
3 )α−

2 j+1
20 Γ

(
3
2 + α − 2 j+1

20

) e−
1
2ψ
(

j
4

)(
ψ
( j
4

)
− ψ(0)

) 1
2 +α−

2 j+1
20

−

2∑
r=1

( r
3

) Γ( 3
2 )

( 2
3 )α+ r

r+1 Γ
(

3
2 + α + r

r+1

) e−
1
2ψ
(

r+1
4

)(
ψ
(r + 1

4

)
− ψ(0)

) 1
2 +α+ r

r+1

)
,

where

Ω =

2∑
i=1

( i + 1
2

)
e−

1
2

(
ψ(t)−ψ(0)

)
+

2∑
r=1

( r
3

)(ψ( r+1
4

)
− ψ(0)

) r
r+1 e−

1
2

(
ψ( r+1

4 )−ψ(0)
)

(2
3 )

r
r+1 Γ

(
1 + r

r+1

) .

We consider several cases of the following function ψ(t):
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(I) If ψ(t) = tα then the solution of linear Caputo-PFIDE withMNCs (5.2) is given as in

u(t) =
Γ( 3

2 )

(2
3 )αΓ( 3

2 + α)
e−

tα
2
(
tα
)1/2+α

+
e−

tα
2

Ω

(
1 −

2∑
i=1

( i + 1
2

)
e−

1
2

(
2i+1

5

)α(2i + 1
5

) α
2

−

3∑
j=1

(2 j − 1
5

) Γ( 3
2 )

(2
3 )α−

2 j+1
20 Γ

(
3
2 + α − 2 j+1

20

)e−
1
2

(
j
4

)α( j
4
)α( 1

2 +α−
2 j+1

20

)

−

2∑
r=1

( r
3

) Γ( 3
2 )

(2
3 )α+ r

r+1 Γ
(

3
2 + α + r

r+1

)e−
1
2

(
r+1

4

)α(r + 1
4

)α( 1
2 +α+ r

r+1

))
,

where

Ω =

2∑
i=1

( i + 1
2

)
e−

tα
2 +

2∑
r=1

( r
3

)( r+1
4

) αr
r+1 e−

1
2

(
r+1

4

)α
(2

3 )
r

r+1 Γ
(
1 + r

r+1

) .
(II) If ψ(t) = sin t

α
then the solution of linear Caputo-PFIDE withMNCs (5.2) is given as in

u(t) =
Γ( 3

2 )

(2
3 )αΓ( 3

2 + α)
e−

sin t
2α

(sin t
α

) 1
2 +α

+
e−

sin t
2α

Ω

(
1 −

2∑
i=1

( i + 1
2

)
e−

sin
(

2i+1
5

)
2α

(sin
(

2i+1
5

)
α

) 1
2

−

3∑
j=1

(2 j − 1
5

) Γ( 3
2 )

(2
3 )α−

2 j+1
20 Γ

(
3
2 + α − 2 j+1

20

) e−
sin

(
j
4

)
2α

(sin
(

j
4

)
α

) 1
2 +α−

2 j+1
20

−

2∑
r=1

( r
3

) Γ( 3
2 )

(2
3 )α+ r

r+1 Γ
(

3
2 + α + r

r+1

) e−
sin( r+1

4 )
2α

(sin
(

r+1
4

)
α

) 1
2 +α+ r

r+1
)
,

where

Ω =

2∑
i=1

( i + 1
2

)
e−

sin t
2α +

2∑
r=1

( r
3

)( sin
(

r+1
4

)
α

) r
r+1 e−

sin( r+1
4 )

2α

( 2
3 )

r
r+1 Γ

(
1 + r

r+1

) .

(III) If ψ(t) = eαt then the solution of linear Caputo-PFIDE withMNCs (5.2) is given as in

u(t) =
Γ(3

2 )

( 2
3 )αΓ( 3

2 + α)
e−

eαt
2
(
eαt − 1

) 1
2 +α

+
e−

eαt−1
2

Ω

(
1 −

2∑
i=1

( i + 1
2

)
e−

e
α

(
2i+1

5

)
2

(
eα

(
2i+1

5

)
− 1

) 1
2

−

3∑
j=1

(2 j − 1
5

) Γ(3
2 )

( 2
3 )α−

2 j+1
20 Γ

(
3
2 + α − 2 j+1

20

) e−
e
α j
4
2
(
e
α j
4 − 1

) 1
2 +α−

2 j+1
20

−

2∑
r=1

( r
3

) Γ( 3
2 )

( 2
3 )α+ r

r+1 Γ
(

3
2 + α + r

r+1

)e−
e
α

(
r+1

4

)
2

(
eα

(
r+1

4

)
− 1

) 1
2 +α+ r

r+1

)
,

where

Ω =

2∑
i=1

( i + 1
2

)
e−

1
2

(
eαt−1

)
+

2∑
r=1

( r
3

)(eα( r+1
4

)
− 1

) r
r+1 e−

1
2

(
eα
(

r+1
4

)
−1
)

( 2
3 )

r
r+1 Γ

(
1 + r

r+1

) .
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(IV) If ψ(t) =
ln(1+t)
α

then the solution of linear Caputo-PFIDE withMNCs (5.2) is given as in

u(t) =
Γ(3

2 )

( 2
3 )αΓ( 3

2 + α)
e−

1
2α ln(1+t)

( ln(1 + t)
α

)1/2+α

+
e−

1
2 ln(1+t)

Ω

(
1 −

2∑
i=1

( i + 1
2α

)
e−

1
2α ln

(
1+ 2i+1

5

)(1
α

ln
(
1 +

2i + 1
5

) 1
2

−

3∑
j=1

(2 j − 1
5

) Γ(3
2 )

( 2
3 )α−

2 j+1
20 Γ

(
3
2 + α − 2 j+1

20

)e−
1

2α ln
(

1+
j
4

)(1
α

ln
(
1 +

j
4

) 1
2 +α−

2 j+1
20

−

2∑
r=1

( r
3

) Γ( 3
2 )

( 2
3 )α+ r

r+1 Γ
(

3
2 + α + r

r+1

)e−
1

2α ln
(

1+ r+1
4

)(1
α

ln
(
1 +

r + 1
4

)) 1
2 +α+ r

r+1

)
,

where

Ω =

2∑
i=1

( i + 1
2

)
e−

1
2α ln(1+t) +

2∑
r=1

( r
3

)( 1
α

ln
(
1 + r+1

4

)) r
r+1 e−

1
2α ln(1+ r+1

4 )

(2
3 )

r
r+1 Γ

(
1 + r

r+1

) .

Graph representing the solution of the problem (5.2) with various values α via many the functions
ψ(t) = tα, ψ(t) = sin t

α
, ψ(t) = eαt and ψ(t) =

ln(1+t)
α

is shown as in Figures 1–4 by using Python.

Figure 1. The graphical of u(t) under ψ(t) = tα.

Figure 2. The graphical of u(t) under ψ(t) = sin t
α

.
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Figure 3. The graphical of u(t) under ψ(t) = eαt.

Figure 4. The graphical of u(t) under ψ(t) =
ln(1+t)
α

.

6. Conclusions

The qualitative analysis is accomplished in this work. The authors proved the existence, uniqueness
and stability of solutions for Caputo-PFIDE with MNCs which consist of multi-point and fractional
multi-order boundary conditions. Some famous theorems are employed to obtain the main results
such as the Banach’s FPT is the important theorem to prove the uniqueness of the solution, while
Leray-Schauder’s nonlinear alternative and Krasnoselskii’s FPT are used to investigate the existence
results. Furthermore, we established the various kinds of Ulam’s stability like HU, GHU, HUR and
GHUR stables. Finally, by using Python, numerical instances allowed to guarantee the accuracy of the
theoretical results.

This research would be a great work to enrich the qualitative theory literature on the problem of
nonlinear fractional mixed nonlocal conditions involving a particular function. For the future works,
we shall focus on studying the different types of existence results and stability analysis for impulsive
fractional boundary value problems.
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