Research article

Some linear differential equations generated by matrices

  • Received: 25 December 2021 Accepted: 09 March 2022 Published: 14 March 2022
  • MSC : 34A99

  • Given matrices $ N\in C^{s\times s} $ and $ S_0, \ldots, S_q\in C^{s\times s} $, we solve the linear differential equation

    $ \begin{align*} \sum\limits_{n = 0}^q T_n(t)\ (d/dt)^n f(t) = g(t), \end{align*} $

    where $ t\in R $, $ T_n(t) = e^{tN}S_ne^{-tN} $, and $ f(t):R\rightarrow C^s $, using the roots of $ d(\nu) = \det\ D(\nu) $, where

    $ \begin{align*} D(\nu) = \sum\limits_{n = 0}^q S_n\ \left(\nu I_r+N\right)^n. \end{align*} $

    For example,

    $ \begin{align*} N = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \end{align*} $

    implies

    $ \begin{align*} e^{tN} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}, \end{align*} $

    so that $ T_n(t) $ are periodic, giving an explicit solution to a form of Floquet's theorem.

    Citation: Christopher Withers, Saralees Nadarajah. Some linear differential equations generated by matrices[J]. AIMS Mathematics, 2022, 7(6): 9588-9602. doi: 10.3934/math.2022533

    Related Papers:

  • Given matrices $ N\in C^{s\times s} $ and $ S_0, \ldots, S_q\in C^{s\times s} $, we solve the linear differential equation

    $ \begin{align*} \sum\limits_{n = 0}^q T_n(t)\ (d/dt)^n f(t) = g(t), \end{align*} $

    where $ t\in R $, $ T_n(t) = e^{tN}S_ne^{-tN} $, and $ f(t):R\rightarrow C^s $, using the roots of $ d(\nu) = \det\ D(\nu) $, where

    $ \begin{align*} D(\nu) = \sum\limits_{n = 0}^q S_n\ \left(\nu I_r+N\right)^n. \end{align*} $

    For example,

    $ \begin{align*} N = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \end{align*} $

    implies

    $ \begin{align*} e^{tN} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}, \end{align*} $

    so that $ T_n(t) $ are periodic, giving an explicit solution to a form of Floquet's theorem.



    加载中


    [1] C. C. Chicone, Ordinary Differential Equations with Applications, Springer Verlag, New York, 1991.
    [2] V. P. Derevenskii, First-order linear ordinary differential equations over special matrices, Differential Equations, 56 (2020), 696–709. https://doi.org/10.1134/S0012266120060038 doi: 10.1134/S0012266120060038
    [3] M. Elishevich, Boundary-value problem for a system of linear inhomogeneous differential equations of the first order with rectangular matrices, Journal of Mathematical Sciences, 228 (2018), 226–244. https://doi.org/10.1007/s10958-017-3617-8 doi: 10.1007/s10958-017-3617-8
    [4] J. K. Hale, Ordinary Differential Equations, 2nd edition, Krieger, Florida, 1980.
    [5] L. Markus, H. Yamabe, Global stability criteria for differential systems, Osaka Math. Journal, 12 (1960), 305–317.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1262) PDF downloads(91) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog