In this paper, we introduce a new generalization of the Frank matrix, which is a lower Hessenberg matrix called the generalized max $ r $-Frank matrix. We obtain a recurrence relation provided by the characteristic polynomial, inverse, determinant, and norm properties of this matrix. We also present an example to illustrate the results obtained.
Citation: Hasan Gökbaş. Some properties of the generalized max Frank matrices[J]. AIMS Mathematics, 2024, 9(10): 26826-26835. doi: 10.3934/math.20241305
In this paper, we introduce a new generalization of the Frank matrix, which is a lower Hessenberg matrix called the generalized max $ r $-Frank matrix. We obtain a recurrence relation provided by the characteristic polynomial, inverse, determinant, and norm properties of this matrix. We also present an example to illustrate the results obtained.
[1] | S. Y. Akbiyik, M. Akbiyik, F. Yilmaz, One type of symmetric matrix with harmonic pell entries, its inversion, permanents and some norms, Mathematics, 9 (2021), 539. https://doi.org/10.3390/math9050539 doi: 10.3390/math9050539 |
[2] | B. V. R. Bhat, On greatest common divisor matrices and their applications, Linear Algebra Appl., 158 (1991), 77–97. https://doi.org/10.1016/0024-3795(91)90051-W doi: 10.1016/0024-3795(91)90051-W |
[3] | P. J. Eberlein, A note on the matrices denoted $B_n$, SIAM J. Appl. Math., 20 (1971), 87–92. http://doi.org/10.1137/0120012 doi: 10.1137/0120012 |
[4] | C. M. da Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math., 200 (2007), 283–286. https://doi.org/10.1016/j.cam.2005.08.047 doi: 10.1016/j.cam.2005.08.047 |
[5] | W. L. Frank, Computing eigenvalues of complex matrices by determinant evaluation and by methods of Danilewski and Wielandt, J. Soc. Indust. Appl. Math., 6 (1958), 378–392. https://doi.org/10.1137/0106026 doi: 10.1137/0106026 |
[6] | J. F. Hake, A remark on Frank matrices, Computing, 35 (1985), 375–379. https://doi.org/10.1007/BF02240202 |
[7] | P. Haukkanen, M. Mattila, J. K. Merikoski, A. Kovacec, Bounds for sine and cosine via eigenvalue estimation, Spec. Matrices, 2 (2014), 19–29. https://doi.org/10.2478/spma-2014-0003 doi: 10.2478/spma-2014-0003 |
[8] | R. A. Horn, C. R. Johnson, Matrix analysis, 2Eds., Cambridge: Cambridge University Press, 2012. |
[9] | S. H. Jafari-Petroudi, B. Pirouz, A particular matrix, its inversion and some norms, Appl. Comput. Math., 4 (2015), 47–52. https://doi.org/10.11648/j.acm.20150402.13 |
[10] | E. Kiliç, T. Arikan, Sudying new generalizations of max-min matrices with a novel approach, Turk. J. Math., 43 (2019), 2010–2024. http://doi.org/10.3906/mat-1811-95 doi: 10.3906/mat-1811-95 |
[11] | C. Kizilateş, N. Terzioğlu, On $r$-min and $r$-max matrices, J. Appl. Math. Comput., 68 (2022), 4559–4588. https://doi.org/10.1007/s12190-022-01717-y doi: 10.1007/s12190-022-01717-y |
[12] | M. Mattila, P. Haukkanen, Studying the various properties of min and max matrices-elementary vs. more advanced methods, Spec. Matrices, 4 (2016), 101–109. https://doi.org/10.1515/spma-2016-0010 doi: 10.1515/spma-2016-0010 |
[13] | E. Ö. Mersin, Sturm's theorem for min matrices, AIMS Mathematics, 8 (2023), 17229–17245. http://doi.org/10.3934/math.2023880 doi: 10.3934/math.2023880 |
[14] | E. Ö. Mersin, M. Bahşi, A. D. Maden, Some properties of generalized Frank matrices, Mathematical Sciences and Applications E-Notes, 8 (2020), 170–177. https://doi.org/10.36753/mathenot.672621 doi: 10.36753/mathenot.672621 |
[15] | E. Ö. Mersin, M. Bahşi, Sturm theorem for the generalized Frank matrix, Hacet. J. Math. Stat., 50 (2021), 1002–1011. http://doi.org/10.15672/hujms.773281 doi: 10.15672/hujms.773281 |
[16] | E. Ö. Mersin, M. Bahşi, Bounds for the maximum eigenvalues of the Fibonacci-Frank and Lucas-Frank matrices, Commun. Fac. Sci. Univ., 73 (2024), 420–436. |
[17] | D. Özgül, M. Bahşi, Min matrices with hyper lucas numbers, J. Sci. Arts, 4 (2020), 855–864. https://doi.org/10.46939/J.Sci.Arts-20.4-a07 doi: 10.46939/J.Sci.Arts-20.4-a07 |
[18] | E. Polatli, On some properties of a generalized min matrix, AIMS Mathematics, 8 (2023), 26199–26212. https://doi.org/10.3934/math.20231336 doi: 10.3934/math.20231336 |
[19] | G. Pólya, G. Szegö, Problems and theorems in analysis II, Berlin: Springer, 1998. http://doi.org/10.1007/978-3-642-61905-2 |
[20] | R. Reams, Hadamard inverses, square roots and products of almost semidefinite matrices, Linear Algebra Appl., 288 (1999), 35–43. https://doi.org/10.1016/S0024-3795(98)10162-3 doi: 10.1016/S0024-3795(98)10162-3 |
[21] | B. J. Shi, C. Kizilateş, A new generalization of the Frank matrix and its some properties, Comp. Appl. Math., 43 (2024), 19. https://doi.org/10.1007/s40314-023-02524-2 doi: 10.1007/s40314-023-02524-2 |
[22] | J. M. Varah, A generalization of the Frank matrix, SIAM Journal on Scientific and Statistical Computing, 7 (1986), 835–839. https://doi.org/10.1137/0907056 doi: 10.1137/0907056 |