In the context of inverse $ {{N}_{0}} $-matrices, this study focuses on the closure of generalized Perron complements by utilizing the characteristics of $ M $-matrices, nonnegative matrices, and inverse $ {{N}_{0}} $-matrices. In particular, we illustrate that the inverse $ {{N}_{0}} $-matrix and its Perron complement matrix possess the same spectral radius. Furthermore, we present certain general inequalities concerning generalized Perron complements, Perron complements, and submatrices of inverse $ {{N}_{0}} $-matrices. Finally, we provide specific examples to verify our findings.
Citation: Qin Zhong, Ling Li. Notes on the generalized Perron complements involving inverse $ {{N}_{0}} $-matrices[J]. AIMS Mathematics, 2024, 9(8): 22130-22145. doi: 10.3934/math.20241076
In the context of inverse $ {{N}_{0}} $-matrices, this study focuses on the closure of generalized Perron complements by utilizing the characteristics of $ M $-matrices, nonnegative matrices, and inverse $ {{N}_{0}} $-matrices. In particular, we illustrate that the inverse $ {{N}_{0}} $-matrix and its Perron complement matrix possess the same spectral radius. Furthermore, we present certain general inequalities concerning generalized Perron complements, Perron complements, and submatrices of inverse $ {{N}_{0}} $-matrices. Finally, we provide specific examples to verify our findings.
[1] | M. Fiedler, T. L. Markham, A classification of matrices of class $Z$, 173 (1992), 115–124. https://doi.org/10.1016/0024-3795(92)90425-A |
[2] | G. Windisch, $M$-matrices in Numerical Analysis, Berlin: Springer-Verlag, 2013. https://doi.org/10.1007/978-3-663-10818-4 |
[3] | C. R. Johnson, Inverse $M$-matrices, Linear Algebra Appl., 47 (1982), 195–216. https://doi.org/10.1016/0024-3795(82)90238-5 |
[4] | D. V. Ouellette, Schur complements and statistics, Linear Algebra Appl., 36 (1981), 187–295. https://doi.org/10.1016/0024-3795(81)90232-9 doi: 10.1016/0024-3795(81)90232-9 |
[5] | E. Golpar Raboky, On generalized Schur complement of matrices and its applications to real and integer matrix factorizations, J. Math. Model., 10 (2022), 39–51. https://doi.org/10.22124/JMM.2021.19495.1675 doi: 10.22124/JMM.2021.19495.1675 |
[6] | C. D. Meyer, Uncoupling the Perron eigenvector problem, Linear Algebra Appl., 114/115 (1989), 69–94. https://doi.org/10.1016/0024-3795(89)90452-7 doi: 10.1016/0024-3795(89)90452-7 |
[7] | L. Z. Lu, Perron complement and Perron root, Linear Algebra Appl., 341 (2002), 239–248. https://doi.org/10.1016/S0024-3795(01)00378-0 doi: 10.1016/S0024-3795(01)00378-0 |
[8] | M. Neumann, Inverses of Perron complements of inverse $M$-matrices, Linear Algebra Appl., 313 (2000), 163–171. https://doi.org/10.1016/S0024-3795(00)00128-2 doi: 10.1016/S0024-3795(00)00128-2 |
[9] | Z. M. Yang, Some closer bounds of Perron root basing on generalized Perron complement, J. Comput. Appl. Math., 235 (2010), 315–324. https://doi.org/10.1016/j.cam.2010.06.012 doi: 10.1016/j.cam.2010.06.012 |
[10] | G. X. Huang, F. Yin, K. Guo, The lower and upper bounds on Perron root of nonnegative irreducible matrices, J. Comput. Appl. Math., 217 (2008), 259–267. https://doi.org/10.1016/j.cam.2007.06.034 doi: 10.1016/j.cam.2007.06.034 |
[11] | M. Adm, J. Garloff, Total nonnegativity of the extended Perron complement, Linear Algebra Appl., 508 (2016), 214–224. https://doi.org/10.1016/j.laa.2016.07.002 doi: 10.1016/j.laa.2016.07.002 |
[12] | L. L. Wang, J. Z. Liu, S. Chu, Properties for the Perron complement of three known subclasses of $H$-matrices, J. Inequal. Appl., 2015 (2015), 1–10. https://doi.org/10.1186/s13660-014-0531-1 doi: 10.1186/s13660-014-0531-1 |
[13] | L. Zeng, M. Xiao, T. Z. Huang, Perron complements of diagonally dominant matrices and $H$-matrices, Appl. Math. E-Notes, 9 (2009), 289–296. |
[14] | G. A. Johson, A generalization of $N$-matrices, Linear Algebra Appl., 48 (1982), 201–217. https://doi.org/10.1016/0024-3795(82)90108-2 doi: 10.1016/0024-3795(82)90108-2 |
[15] | G. A. Johson, Inverse ${{N}_{0}}$-matrices, Linear Algebra Appl., 64 (1985), 215–222. https://doi.org/10.1016/0024-3795(85)90278-2 doi: 10.1016/0024-3795(85)90278-2 |
[16] | Z. G. Ren, T. Z. Huang, X. Y. Cheng, A note on generalized Perron complements of $Z$-matrices, Electron. J. Linear Algebra, 15 (2006), 8–13. https://doi.org/10.13001/1081-3810.1217 doi: 10.13001/1081-3810.1217 |
[17] | S. W. Zhou, T. Z. Huang, On Perron complements of inverse ${{N}_{0}}$-matrices, Linear Algebra Appl., 434 (2011), 2081–2088. https://doi.org/10.1016/j.laa.2010.12.004 doi: 10.1016/j.laa.2010.12.004 |
[18] | A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Philadelphia: Society for Industrial and Applied Mathematics, 1994. https://doi.org/10.1137/1.9781611971262 |
[19] | C. S. Yang, H. B. Wang, Y. F. Jiang, Some properties of (inverse) ${{N}_{0}}$-Matrices with its applications, Appl. Mech. Mater., 590 (2014), 795–798. https://doi.org/10.4028/www.scientific.net/AMM.590.795 doi: 10.4028/www.scientific.net/AMM.590.795 |
[20] | Y. Chen, Notes on ${{F}_{0}}$-matrices, Linear Algebra Appl., 142 (1990), 167–172. https://doi.org/10.1016/0024-3795(90)90265-E doi: 10.1016/0024-3795(90)90265-E |
[21] | T. Ando, Inequalities for $M$-matrices, Linear Multil. Algebra., 8 (1980), 291–316. https://doi.org/10.1080/03081088008817334 doi: 10.1080/03081088008817334 |