Research article

Crossing cubic Lie algebras

  • Received: 19 March 2024 Revised: 02 July 2024 Accepted: 08 July 2024 Published: 16 July 2024
  • MSC : 06F35, 03G25, 03B52, 03B05

  • An interval-valued fuzziness structure is an effective approach addressing ambiguity and for expressing people's hesitation in everyday situations. An $ \mathcal{N} $-structure is a novel technique for solving practical problems. This is beneficial for resolving a variety of issues, and a lot of progress is being made right now. In order to develop crossing cubic structures ($ \mathcal{CCS}s $), Jun et al. amalgamate interval-valued fuzziness and $ \mathcal{N} $-structures. In this manuscript, our main contribution is to originate the concepts of crossing cubic ($ \mathcal{CC} $) Lie algebra, $ \mathcal{CC} $ Lie sub-algebra, ideal, and homomorphism. We investigate some properties of these concepts. In a Lie algebra, the construction of a quotient Lie algebra via the $ \mathcal{CC} $ Lie ideal is provided. Furthermore, the $ \mathcal{CC} $ isomorphism theorems are presented.

    Citation: Anas Al-Masarwah, Nadeen Kdaisat, Majdoleen Abuqamar, Kholood Alsager. Crossing cubic Lie algebras[J]. AIMS Mathematics, 2024, 9(8): 22112-22129. doi: 10.3934/math.20241075

    Related Papers:

  • An interval-valued fuzziness structure is an effective approach addressing ambiguity and for expressing people's hesitation in everyday situations. An $ \mathcal{N} $-structure is a novel technique for solving practical problems. This is beneficial for resolving a variety of issues, and a lot of progress is being made right now. In order to develop crossing cubic structures ($ \mathcal{CCS}s $), Jun et al. amalgamate interval-valued fuzziness and $ \mathcal{N} $-structures. In this manuscript, our main contribution is to originate the concepts of crossing cubic ($ \mathcal{CC} $) Lie algebra, $ \mathcal{CC} $ Lie sub-algebra, ideal, and homomorphism. We investigate some properties of these concepts. In a Lie algebra, the construction of a quotient Lie algebra via the $ \mathcal{CC} $ Lie ideal is provided. Furthermore, the $ \mathcal{CC} $ isomorphism theorems are presented.



    加载中


    [1] L. Dorst, C. Doran, J. Lasenby, Applications of geometric algebra in computer science and engineering, Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
    [2] W. Wechler, Universal algebra for computer scientists, Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
    [3] L. Dorst, D. Fontijne, S. Mann, Geometric algebra for computer science: an object-oriented approach to geometry, Elsevier: Amsterdam, The Netherlands, 2007.
    [4] J. A. de Azc$\acute{a}$rraga, J. M. Izquierdo, Lie groups, Lie algebras, cohomology and some applications in physics, Cambridge University Press: Cambridge, UK, 1998.
    [5] M. Guerreiro, Group algebras and coding theory, S$\acute{a}$o Paulo J. Math. Sci., 10 (2016), 346–371. https://doi.org/10.1007/s40863-016-0040-x
    [6] J. E. Humphreys, Introduction to Lie algebras and representation theory, Vol. 9, Graduate Texts in Mathematics, New York: Springer-Verlag, 1972. https://doi.org/10.1007/978-1-4612-6398-2
    [7] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [8] L. A. Zadeh, The concept of a lingusistic variable and its application to approximate reasoning–I, Inform. Sciences, 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [9] Y. B. Jun, C. S. Kim, K. O. Yang, Cubic sets, Ann. Fuzzy Math. Inform., 4 (2012), 83–98.
    [10] Y. B. Jun, K. J. Lee, S. Z. Song, $N$-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc., 22 (2009), 417–437.
    [11] A. Fallatah, M. O. Massa'deh, A. U. Alkouri, Normal and cosets of $(\gamma, \delta)$-fuzzy HX-subgroups, J. Appl. Math. Inform., 40 (2022), 719–727. https://doi.org/10.14317/jami.2022.719 doi: 10.14317/jami.2022.719
    [12] A. Al-Masarwah, A. G. Ahmad, m-polar fuzzy ideals of BCK/BCI-algebras, J. King Saud Univ. Sci., 31 (2019), 1220–1226. https://doi.org/10.1016/j.jksus.2018.10.002 doi: 10.1016/j.jksus.2018.10.002
    [13] E. A. Abuhijleh, M. Massa'deh, A. Sheimat, A. Alkouri, Complex fuzzy groups based on Rosenfeld's approach, WSEAS Trans. Math., 20 (2021), 368–377. https://doi.org/10.37394/23206.2021.20.38 doi: 10.37394/23206.2021.20.38
    [14] G. Muhiuddin, M. E. Elnair, D. Al-Kadi, $N$-structures applied to commutative ideals of BCI-algebras, Symmetry, 14 (2022), 2015. https://doi.org/10.3390/sym14102015 doi: 10.3390/sym14102015
    [15] G. Muhiuddin, K. Porselvi, B. Elavarasan, D. Al-Kadi, Neutrosophic $K$-structures in ordered semigroups, Comput. Model. Eng. Sci., 131 (2022), 979–999. https://doi.org/10.32604/cmes.2022.018615 doi: 10.32604/cmes.2022.018615
    [16] A. Mahboob, G. Muhiuddin, $m$-polar cubic $p$($q$ and $a$)-ideals of BCI-algebras, Discrete Math., Algorithms Appl., 16 (2024), 2350013. https://doi.org/10.1142/S1793830923500131 doi: 10.1142/S1793830923500131
    [17] G. Muhiuddin, D. Al-Kadi, A. Mahboob, Hybrid structures applied to ideals in BCI-algebras, J. Math., 2020 (2020), 1–7. https://doi.org/10.1155/2020/2365078 doi: 10.1155/2020/2365078
    [18] S. E. Yehia, Fuzzy ideals and fuzzy subalgebras of Lie algebras, Fuzzy Sets Syst., 80 (1996), 237–244. https://doi.org/10.1016/0165-0114(95)00109-3 doi: 10.1016/0165-0114(95)00109-3
    [19] M. Akram, Generalized fuzzy Lie subalgebras, In: Fuzzy Lie algebras, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-13-3221-0_4
    [20] M. Akram, K. P. Shum, Fuzzy Lie ideals over a fuzzy field, Ital. J. Pure Appl. Math., 27 (2010), 281–292.
    [21] M. Akram, Fuzzy Lie algebra, Springer Nature, 2018. https://doi.org/10.1007/978-981-13-3221-0
    [22] M. Akram, Fuzzy Lie ideals of Lie algebras with interval-valued membership functions, Quasigroups Related Syst., 16 (2008), 1–12.
    [23] M. Akram, K. P. Shum, Intuitionistic fuzzy Lie algebras, Southeast Asian Bull. Math., 31 (2005), 843–855.
    [24] M. Akram, H. Gulzar, K. P. Shum, Single-valued neutrosophic Lie algebras, J. Math. Res. Appl., 39 (2019), 141–152. https://doi.org/10.3770/j.issn:2095-2651.2019.02.003 doi: 10.3770/j.issn:2095-2651.2019.02.003
    [25] Y. B. Jun, K. Hur, J. G. Lee, J. Kim, Crossing cubic structures as an extension of bipolar fuzzy sets, Ann. Fuzzy Math. Inform., 22 (2021), 1–15. https://doi.org/10.30948/afmi.2021.22.1.1 doi: 10.30948/afmi.2021.22.1.1
    [26] Y. B. Jun, S. Z. Song, Crossing cubic ideals of BCK/BCI-algebras, J. Algebraic Hyperstructures Logical Algebras, 2 (2021), 17–31. https://doi.org/10.52547/HATEF.JAHLA.2.1.2 doi: 10.52547/HATEF.JAHLA.2.1.2
    [27] M. A. $\ddot{O}$zt$\ddot{u}$rk, D. Yılmaz, Y. B. Jun, Semigroup structures and commutative ideals of BCK-algebras based on crossing cubic set structures, Axioms, 11 (2022), 25. https://doi.org/10.3390/axioms11010025 doi: 10.3390/axioms11010025
    [28] S. M. Mostafa, J. G. Lee, Y. B. Jun, K. Hur, C. K. S. Ebid, $(\widetilde{\alpha}, \alpha)$-crossing cubic QS-ideal of QS-algebra, Ann. Fuzzy Math. Inform., 24 (2022), 55–73. https://doi.org/10.30948/afmi.2022.24.1.55 doi: 10.30948/afmi.2022.24.1.55
    [29] S. E. Yehia, Fuzzy ideals and fuzzy sub-algebras of Lie algebras, Fuzzy Sets Syst., 80 (1996), 237–244. https://doi.org/10.1016/0165-0114(95)00109-3 doi: 10.1016/0165-0114(95)00109-3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1512) PDF downloads(112) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog