Loading [MathJax]/jax/output/SVG/jax.js
Research article

Cohomology of nonabelian embedding tensors on Hom-Lie algebras

  • Received: 07 May 2023 Revised: 16 June 2023 Accepted: 20 June 2023 Published: 03 July 2023
  • MSC : 17A32, 17B38, 17B56, 17B61

  • In this paper, we generalize known results of nonabelian embedding tensor to the Hom setting. We introduce the concept of Hom-Leibniz-Lie algebra, which is the basic algebraic structure of nonabelian embedded tensors on Hom-Lie algebras and can also be regarded as a nonabelian generalization of Hom-Leibniz algebra. Moreover, we define a cohomology of nonabelian embedding tensors on Hom-Lie algebras with coefficients in a suitable representation. The first cohomology group is used to describe infinitesimal deformations as an application. In addition, Nijenhuis elements are used to describe trivial infinitesimal deformations.

    Citation: Wen Teng, Jiulin Jin, Yu Zhang. Cohomology of nonabelian embedding tensors on Hom-Lie algebras[J]. AIMS Mathematics, 2023, 8(9): 21176-21190. doi: 10.3934/math.20231079

    Related Papers:

    [1] Yunpeng Xiao, Wen Teng . Representations and cohomologies of modified λ-differential Hom-Lie algebras. AIMS Mathematics, 2024, 9(2): 4309-4325. doi: 10.3934/math.2024213
    [2] Senrong Xu, Wei Wang, Jia Zhao . Twisted Rota-Baxter operators on Hom-Lie algebras. AIMS Mathematics, 2024, 9(2): 2619-2640. doi: 10.3934/math.2024129
    [3] Lili Ma, Qiang Li . Cohomology and its applications on multiplicative Hom-δ-Jordan Lie color triple systems. AIMS Mathematics, 2024, 9(9): 25936-25955. doi: 10.3934/math.20241267
    [4] Xianguo Hu . Universal enveloping Hom-algebras of regular Hom-Poisson algebras. AIMS Mathematics, 2022, 7(4): 5712-5727. doi: 10.3934/math.2022316
    [5] Cenap Özel, Habib Basbaydar, Yasar Sñzen, Erol Yilmaz, Jung Rye Lee, Choonkil Park . On Reidemeister torsion of flag manifolds of compact semisimple Lie groups. AIMS Mathematics, 2020, 5(6): 7562-7581. doi: 10.3934/math.2020484
    [6] Wen Teng, Fengshan Long, Yu Zhang . Cohomologies of modified λ-differential Lie triple systems and applications. AIMS Mathematics, 2023, 8(10): 25079-25096. doi: 10.3934/math.20231280
    [7] Muhammad Asad Iqbal, Abid Ali, Ibtesam Alshammari, Cenap Ozel . Construction of new Lie group and its geometric properties. AIMS Mathematics, 2024, 9(3): 6088-6108. doi: 10.3934/math.2024298
    [8] Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson n-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327
    [9] Nouf Almutiben, Ryad Ghanam, G. Thompson, Edward L. Boone . Symmetry analysis of the canonical connection on Lie groups: six-dimensional case with abelian nilradical and one-dimensional center. AIMS Mathematics, 2024, 9(6): 14504-14524. doi: 10.3934/math.2024705
    [10] Baiying He, Siyu Gao . The nonisospectral integrable hierarchies of three generalized Lie algebras. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329
  • In this paper, we generalize known results of nonabelian embedding tensor to the Hom setting. We introduce the concept of Hom-Leibniz-Lie algebra, which is the basic algebraic structure of nonabelian embedded tensors on Hom-Lie algebras and can also be regarded as a nonabelian generalization of Hom-Leibniz algebra. Moreover, we define a cohomology of nonabelian embedding tensors on Hom-Lie algebras with coefficients in a suitable representation. The first cohomology group is used to describe infinitesimal deformations as an application. In addition, Nijenhuis elements are used to describe trivial infinitesimal deformations.



    This paper studies a special type of algebraic structure called Hom-type algebra structure. The definition identities of this algebraic structure are twisted by algebraic endomorphisms. These structures first appear in the q-deformation of Witt and Virasoro algebras in the form of Hom-Lie algebras [1]. Many scholars pay special attention to this algebraic structure because of its close relationship with discrete and deformed vector fields and differential calculus [1,2,3]. In particular, Hom-Lie algebras with symmetric invariant nondegenerate have been studied in [4]. Representations, cohomologies and deformations of Hom-algebras have been systematically studied in [5,6,7,8,9,10]. These conclusions provide a good starting point for further research.

    Embedding tensors can be traced back to the study of gauge supergravity theory [11]. Bergshoeff et al. [12] studied the Bagger-Lambert theory of multiple M2-branes and the N=8 supersymmetric gauge theories using the embedding tensor. In mathematics, the embedding tensor is called the average operator. Aguiar [13] explored the average operator on associative and Lie algebras. Later on, the deformation and cohomology theory of embedding tensors on associative algebras, Lie algebras and 3-Lie algebras are given in [14,15,16]. Nonabelian embedding tensors on Lie algebras are first introduced by Tang and Sheng [17], which is a nonabelian generalization of the embedding tensor.

    Recently, O-operators on Hom-Lie algebras have been studied by Mishra and Naolekar [18]. Nijenhuis operators on Hom-Lie algebras have been studied by Das and Sen [19]. Embedding tensors on Hom-Lie algebras have been studied by Das and Makhlouf [20]. Our main objective is to study nonabelian embedding tensors on Hom-Lie algebras. The method of this paper is based on the recent work in [17,20]. More precisely, we introduce the concept of Hom-Leibniz-Lie algebras, which is the algebraic structure behind the nonabelian embedding tensor on Hom-Lie algebras. It can be regarded as a nonabelian generalization of the Hom-Leibniz algebra and as a twisted version of the Leibniz-Lie algebra [17]. The main content of this paper is to construct a suitable cohomology theory for a nonabelian embedding tensors on Hom-Lie algebras. We introduce the cohomology of nonabelian embedding tensor by the Loday-Pirashvili cohomology of Hom-Leibniz algebras. However, it is important to note that the cochain complex of Loday-Pirashvili cohomology starts only from 1-cochians, not from 0-cochains. The main difficulty is to choose 0-cochains appropriately and build a proper coboundary map from the set of 0-cochains to that of 1-cochains. Our strategy is to define the set of 0-cochains to be C0Γ(L,L), then, construct the coboundary map explicitly (see Proposition 4.2). At this point, we need extra conditions, that is, the structural map of Hom-Lie algebras is reversible and the endomorphism in the representation of Hom-Lie algebras is an automorphism, so as to ensure that the composition C0Γ(L,L)δΓC1Γ(L,L)δΓC2Γ(L,L) is the zero map. Finally, we classify the infinitesimal deformation of nonabelian embedding tensors on Hom-Lie algebras using the first cohomology group. All the results in this paper can be regarded as generalizations of embedding tensors on Hom-Lie algebras [20] and nonabelian embedding tensors on Lie algebras [17].

    This paper is organized as follows. Section 2 first recalls some basic concepts of Hom-Lie algebras and Hom-Leibniz algebras. Then we introduce the coherent representation of Hom-Lie algebras and the notion of nonabelian embedding tensors on Hom-Lie algebras with respect to a coherent representation. In Section 3, the concept of Hom-Leibniz-Lie algebra is introduced as the basic algebraic structure of a nonabelian embedding tensor. Naturally, a Hom-Leibniz-Lie algebra induces a Hom-Leibniz algebra. In Section 4, the cohomology theory of nonabelian embedding tensors on Hom-Lie algebras is introduced. In particular, we obtain the 0-coboundary operator. Thus the first cohomology group is established. At last, as an application, we characterize the infinitesimal deformation using the first cohomology group. Moreover, Nijenhuis elements are used to describe trivial infinitesimal deformations.

    All vector spaces, tensor products and algebras considered in this paper are on the field K with the characteristic of 0.

    This section recalls some basic concepts of Hom-Lie algebras and Hom-Leibniz algebras. After that, we introduce the coherent representation of Hom-Lie algebras, and we introduce the concept of nonabelian embedding tensors on Hom-Lie algebras by its coherent representation as a twisted version of nonabelian embedding tensors on Lie algebras [17] and a nonabelian generalization of embedding tensors on Hom- Lie algebras [20].

    Definition 2.1. (see [8]) A Hom-Lie algebra (Hom-LieA) is a triple (L,[,],α) consisting of a vector space L, a bilinear skew-symmetric mapping [,]:LLL, and a linear transformation α:LL satisfying α([a,b])=[α(a),α(b)] such that

    [α(a),[b,c]]+[α(c),[a,b]]+[α(b),[c,a]]=0, (2.1)

    for any a,b,cL. Furthermore, if α:LL is a vector space automorphism of L, then L is called regular.

    A homomorphism between two Hom-LieAs (L,[,],α) and (L,[,],α) is a linear map ψ:LL satisfying ψα=αψ and

    ψ([u,v])=[ψ(u),ψ(v)],u,vL.

    To introduce the concept of nonabelian embedding tensors on Lie algebras, Tang and Sheng [17] proposed the coherent action of a Lie algebra on another Lie algebra. Similarly, we propose the coherent representation of Hom-Lie algebras.

    Definition 2.2. (1) (see [10]) A representation of a Hom-LieA (L,[,],α) on a Hom-vector space (L,α) is a linear map ρ:LEnd(L), such that

    ρ(α(ς))α=αρ(ς), (2.2)
    ρ([ς,τ])α=ρ(α(ς))ρ(τ)ρ(α(τ)))ρ(ς), (2.3)

    for all ς,τL.

    (2) A coherent representation of a Hom-LieA (L,[,],α) on a Hom-LieA (L,[,],α) is a linear map ρ:LEnd(L) satisfying Eqs (2.2), (2.3) and

    ρ(α(ς))[μ,ν]=[ρ(ς)μ,α(ν)]+[α(μ),ρ(ς)ν], (2.4)
    [ρ(ς)μ,ν]=0, (2.5)

    for all ςL and μ,νL. We denote a coherent representation by (L;ρ,α). Furthermore, if (L,[,],α) is a regular Hom-LieA, then (L;ρ,α) is called a regular coherent representation of (L,[,],α).

    Example 2.3. A 2-step nilpotent Hom-LieA is a Hom-LieA (L,[,],α) satisfying

    [[a,b],c]=0,a,b,cL. (2.6)

    For a 2-step nilpotent Hom-LieA, the adjoint representation (L;ad,α) of (L,[,],α) is a coherent adjoint representation.

    Definition 2.4. (1) A nonabelian embedding tensor (nonabelian ET) on the Hom-LieA (L,[,],α) w.r.t the coherent representation (L;ρ,α) is a linear map Γ:LL satisfying the following equations:

    Γα=αΓ, (2.7)
    [Γμ,Γν]=Γ(ρ(Γμ)ν+[μ,ν]), (2.8)

    for any μ,νL.

    (2) A nonabelian embedding tensor Hom-Lie algebra (nonabelian ETHLA) is a triple (L,L,Γ) consisting of a Hom-LieA (L,[,],α), a coherent representation (L;ρ,α) of L and a nonabelian ET Γ:LL. We denote a nonabelian ETHLA (L,L,Γ) by the notation LΓL.

    Remark 2.5. If (L,[,],α) is an abelian Hom-LieA, then we can get that Γ is a ET on Hom-LieA (see [20]). In addition, If ρ=0, then Γ is a Hom-LieA homomorphism from L to L.

    Example 2.6. Let L be a 3-dimensional linear space spanned by {ζ1,ζ2,ζ3}. We define a bilinear skew symmetric operation [,]:LLL and a linear transformation α:LL by

    [ζ1,ζ2]=kζ3,α(ζ1)=ζ1,α(ζ2)=ζ2,α(ζ3)=ζ3,

    where kK. Then (L,[,],α) is a 2-step nilpotent Hom-LieA. Moreover, for s,tK,

    Γ=(0000s0t00)

    is a nonabelian ET on (L,[,],α) w.r.t the coherent adjoint representation (L;ad,α).

    Definition 2.7. (see [9]) A Hom-Leibniz algebra (Hom-LeibA) is a vector space L together with a bilinear operation [,]L:LLL and a linear transformation αL:LL satisfying αL([x,y])=[αL(x),αL(y)] such that

    [αL(x),[y,z]L]L=[[x,y]L,αL(z)]L+[αL(y),[x,y]L]L, (2.9)

    for any x,y,zL.

    A homomorphism between two Hom-LeibAs (L1,[,]L1,αL1) and (L2,[,]L2,αL2) is a linear map φ:L1L2 satisfying φαL1=αL2φ and

    φ([u,v]L1)=[φ(u),φ(v)]L2,u,vL1.

    We denote by HLeib the category of Hom-LeibAs and their homomorphisms.

    Definition 2.8. (see [6]) A representation of a Hom-LeibA (L,[,]L,αL) is a pair (V,βV) of a vector space V and a linear transformation βV:VV equipped with two actions l:LVV and r:VLV satisfying the following conditions

    βV(l(x,u))=l(αL(x),βV(v)),βV(r(u,x))=r(βV(v),αL(x)),r(βV(u),[x,y]L)=r(r(u,x),αL(y))+l(αL(x),r(u,y)),l(αL(x),r(u,y))=r(l(x,u),αL(y))+r(βV(u),[x,y]L),l(αL(x),l(y,u))=l([x,y]L,βV(u))+l(αL(y),l(x,u)),

    for any x,yL,uV.

    Proposition 2.9. Let (L,[,],α) and (L,[,],α) be two Hom-LieAs, and let (L;ρ,α) be a coherent representation of L. Then, LL is a Hom-LeibA under the following maps:

    (αα)(a+μ):=α(a)+α(μ),[a+μ,b+ν]ρ:=[a,b]+ρ(a)ν+[μ,ν],

    for any a,bL and μ,νL. (LL,[,]ρ,αα) is called the nonabelian hemisemidirect product Hom-LeibA, and denoted by LρL.

    Proof. For all a,b,cL,μ,ν,ωL, by Eqs (2.1)–(2.5), we have

    (αα)[a+μ,b+ν]ρ=(αα)([a,b]+ρ(a)(ν)+[μ,ν])=α([a,b])+α(ρ(a)(ν)+[μ,ν])=[α(a),α(b)]+ρ(α(a))α(ν)+[α(μ),α(ν)]=[α(a)+α(μ),α(b)+α(ν)]ρ=[(αα)(a+μ),(αα)(b+ν)]ρ

    and

    [[a+μ,b+ν]ρ,(αα)(c+ω)]ρ+[(αα)(b+ν),[a+μ,c+ω]ρ]ρ[(αα)(a+μ),[b+ν,c+ω]ρ]ρ=[[a,b]+ρ(a)ν+[μ,ν],α(c)+α(ω)]ρ+[α(b)+α(ν),[a,c]+ρ(a)ω+[μ,ω]]ρ[α(a)+α(μ),[b,c]+ρ(b)ω+[ν,ω]]ρ=[[a,b],α(c)]+ρ([a,b])α(ω)+[ρ(a)ν+[μ,ν],α(ω)]+[α(b),[a,c]]+ρ(α(b))(ρ(a)ω+[μ,ω])+[α(ν),ρ(a)ω+[μ,ω]][α(a),[b,c]]ρ(α(a))(ρ(b)ω+[ν,ω])[α(μ),ρ(b)ω+[ν,ω]]=[[a,b],α(c)]+ρ([a,b])α(ω)+[ρ(a)ν,α(ω)]+[[μ,ν],α(ω)]+[α(b),[a,c]]+ρ(α(b))ρ(a)ω+ρ(α(b))[μ,ω]+[α(ν),ρ(a)ω]+[α(ν),[μ,ω]][α(a),[b,c]]ρ(α(a))ρ(b)ωρ(α(a))[ν,ω][α(μ),ρ(b)ω][α(μ),[ν,ω]]=0.

    Thus, (LL,[,]ρ,αα) is a Hom-LeibA.

    In the following theorem, we use graphs to describe nonabelian ETs.

    Theorem 2.10. A linear map Γ:LL is a nonabelian ET on (L,[,],α) w.r.t the coherent representation (L;ρ,α) if and only if the graph Gr(Γ)={Γν+ν|νL} is a subalgebra of the nonabelian hemisemidirect product Hom-LeibA LρL.

    Proof. Let Γ:LL be a linear map. Then, for all μ,νL, we have

    (αα)(Γμ+μ)=α(Γμ)+α(μ),[Γμ+μ,Γν+ν]ρ=[Γμ,Γν]+ρ(Γμ)ν+[μ,ν],

    Thus, the graph Gr(Γ)={Γμ+μ|μL} is a subalgebra of the nonabelian hemisemidirect product Hom-LeibA LρL if and only if Γ meets Eqs (2.7) and (2.8), which implies that Γ is a nonabelian ET on L w.r.t the coherent representation (L;ρ,α).

    Because L and Gr(Γ) are isomorphic as linear spaces, thereby, we have the following corollary.

    Corollary 2.11. Let LΓL be a nonabelian ETHLA. If a linear map [,]Γ:L×LL is given by

    [μ,ν]Γ=ρ(Γμ)ν+[μ,ν], (2.10)

    for any μ,νL. Then (L,[,]Γ,α) is a Hom-LeibA. Moreover, Γ is a homomorphism from the Hom-LeibA (L,[,]Γ,α) to the Hom-LieA (L,[,],α). The Hom-LeibA (L,[,]Γ,α) is called the descendent Hom-LeibA.

    The above corollary shows that a nonabelian ET on Hom-LieAs naturally induces a Hom-LeibA.

    Definition 2.12. Let LΓL and LΓL be two nonabelian ETHLAs. Then a homomorphism from LΓL to LΓL consists of two Hom-LieA homomorphisms ψL:LL and ψL:LL meets the following equations

    ΓψL=ψLΓ, (2.11)
    ψL(ρ(a)μ)=ρ(ψL(a))ψL(μ), (2.12)

    for aL and μL. Furthermore, if ψL and ψL are nondegenerate, (ψL,ψL) is called an isomorphism from LΓL to LΓL.

    We denote by NETHLA the category of nonabelian ETHLAs and their homomorphisms.

    It follows from the following proposition that there is a functor F:NETHLAHLeib.

    Proposition 2.13. Let (ψL,ψL) be a homomorphism from LΓL to LΓL. Then, ψL is a homomorphism of descendent Hom-LeibA from (L,[,,]Γ,α) to (L,[,,]Γ,α).

    Proof. For all μ,νL, by Eqs (2.10)–(2.12), we have

    ψL([μ,ν]Γ)=ψL(ρ(Γμ)ν+[μ,ν])=ρ(ψL(Γμ))ψL(ν)+ψL([μ,ν])=ρ(ΓψL(μ))ψL(ν)+[ψL(μ),ψL(ν)]=[ψL(μ),ψL(ν)]Γ.

    Thus, we can get ψL is a homomorphism of descendent Hom-LeibAs from (L,[,]Γ,α) to (L,[,]Γ,α).

    Proposition 2.14. Let Γ:LL be a nonabelian ET on (L,[,],α) w.r.t the coherent representation (L;ρ,α). Let ψL:LL and ψL:LL be two Hom-LieA isomorphisms such that Eqs (2.11) and (2.12) hold. Then, ψ1LΓψL is a nonabelian ET on (L,[,],α) w.r.t the coherent representation (L;ρ,α).

    Proof. For all μ,νL, by Eqs (2.7), (2.8), (2.11) and (2.12), we have

    (ψ1LΓψL)α=(ψ1LΓ)(αψL)=ψ1L(αΓ)ψL=α(ψ1LΓψL),[(ψ1LΓψL)μ,(ψ1LΓψL)ν]=ψ1L([ΓψL(μ),ΓψL(ν)])=ψ1L(Γ(ρ(ΓψL(μ))ψL(ν)+[ψL(μ),ψL(ν)]))=ψ1L(Γ(ψL(ρ(ψ1L(ΓψLμ))ν)+ψL([μ,ν])))=(ψ1LΓψL)(ρ((ψ1LΓψL)(μ))ν+[μ,ν]).

    Thus, ψ1LΓψL is a nonabelian ET.

    In [17], Tang and Sheng construct Leibniz- Lie algebra as the algebraic structure of nonabelian embedding tensors on Lie algebras. In this section, developing some techniques in [17], we introduce the concept of Hom-Leibniz-Lie algebra as the basic algebraic structure of nonabelian ETHLA, and as a twisted version of Leibniz-Lie algebra [17]. It is also proved that a Hom-Leibniz-Lie algebra induces a Hom-LeibA.

    Definition 3.1. A Hom-Leibniz-Lie algebra (Hom-LeibLieA) (L,[,],,α) consists of a Hom-LieA (L,[,],α) and a bilinear product ⊲:LLL satisfying α(μν)=α(μ)α(ν) such that

    α(μ)(νω)=(μν)α(ω)+α(ν)(μω)+[μ,ν]α(ω), (3.1)
    α(μ)[ν,ω]=[μν,α(ω)]=0, (3.2)

    for any μ,ν,ωL.

    A homomorphism between two Hom-LeibLieAs (L1,[,]1,1,α1) and (L2, [,]2,2,α2) is a Hom-LieA homomorphism ψ:L1L2 such that

    ψ(μ1ν)=ψ(μ)2ψ(ν),μ,νL1.

    We denote by HLLAlg the category of Hom-LeibLieAs and their homomorphisms.

    Remark 3.2. A Hom-LeibA (L,[,]L,αL) is naturally a Hom-LeibLieA if the Hom-LieA is abelian.

    Example 3.3. Let (L,[,],α) be a 3-dimensional Hom-LieA given in Example2.6. We define a bilinear product ⊲:LLL by

    ζ1ζ1=ζ3,ζ1ζ2=ζ3,ζ2ζ1=ζ3,ζ2ζ2=ζ3.

    Then, (L,[,],,α) is a Hom-LeibLieA.

    The following theorem shows that a Hom-LeibLieA naturally induces a Hom-LeibA and a representation of Hom-LeibA.

    Theorem 3.4. Let (L,[,],,α) be a Hom-LeibLieA. Then, the binary product [,]:LLL given by

    [μ,ν]:=μν+[μ,ν], (3.3)

    for any μ,νL, defines a Hom-LeibA structure on L, which is denoted by (L,[,],α) and called the subadjacent Hom-LeibA.

    Furthermore, we define l:LLL by

    l(μ,ν)=μν.

    Then, (L,l,0,α) is a representation of (L,[,],α).

    Proof. For any μ,ν,ωL, by Eqs (2.1), (3.1), (3.2) and (3.3), we have

    α([μ,ν])=α(μν+[μ,ν])=α(μ)α(ν)+[α(μ),α(ν)]=[α(μ),α(ν)],[[μ,ν],α(ω)]+[α(ν),[μ,ω]][α(μ),[ν,ω]]=[μν+[μ,ν],α(ω)]+[α(ν),μω+[μ,ω]][α(μ),νω+[ν,ω]]=(μν)α(ω)+[μ,ν]α(ω)+[μν,α(ω)]+[[μ,ν],α(ω)]+α(ν)(μω)+α(ν)[μ,ω]+[α(ν),μω]+[α(ν),[μ,ω]]α(μ)(νω)α(μ)[ν,ω][α(μ),νω][α(μ),[ν,ω]]=0.

    Therefore, we deduce that (L,[,],α) is a Hom-LeibA.

    Furthermore, by Eqs (3.1) and (3.3), we have l(α(μ),l(ν,ω))=l([μ,ν],α(ω))+l(α(ν),l(μ,ω)) which implies that (L,l,0,α) is a representation of the Hom-LeibA (L,[,],α).

    The following theorem shows that a nonabelian ETHLA induces a Hom-LeibLieA.

    Theorem 3.5. Let LΓL be a nonabelian ETHLA. Then, (L,[,],Γ,α) is a Hom-LeibLieA, where

    μΓν:=ρ(Γμ)ν, (3.4)

    for any μ,νL.

    Proof. For any μ,ν,ωL, by Eqs (2.2), (2.3), (2.7) and (2.8), we have

    α(μΓν)=α(ρ(Γμ)ν)=ρ(α(Γμ))α(ν)=ρ(Γα(μ))α(ν)=α(μ)Γα(μ),(μΓν)Γα(ω)+α(ν)Γ(μΓw)+[μ,ν]Γα(ω)α(μ)Γ(νΓω)=ρ(Γρ(Γμ)ν)α(ω)+ρ(Γα(ν))(ρ(Γμ)ω)+ρ(Γ[μ,ν])α(ω)ρ(Γα(μ))ρ(Γν)ω=ρ(Γρ(Γμ)ν)α(ω)+ρ(α(Γν))(ρ(Γμ)ω)+ρ([Γμ,Γν]Tρ(Γμ)ν)α(ω)ρ(α(Γμ))ρ(Γν)ω=ρ(α(Γν))(ρ(Γμ)ω)+ρ([Γμ,Γν])α(ω)ρ(α(Γμ))ρ(Γν)ω=0.

    Moreover, by Eqs (2.4) and (2.5), we have

    α(μ)Γ[ν,ω]=ρ(Γα(μ))[ν,ω]=ρ(α(Γμ))[ν,ω]=[ρ(Γμ)ν,α(ω)]+[α(ν),ρ(Γμ)ω]=[ρ(Γμ)ν,α(ω)]=[μΓν,α(ω)]=0.

    Therefore, (L,[,],Γ,α) is a Hom-LeibLieA.

    It follows from the following proposition that there is a functor J:NETHLAHLLAlg.

    Proposition 3.6. Let (ψL,ψL) be a homomorphism from LΓL to LΓL. Then, ψL is a homomorphism of Hom-LeibLieAs from (L,[,],Γ,α) to (L,[,],Γ,α).

    Proof. For any μ,νL, by Eqs (2.11), (2.12) and (3.4), we have

    ψL(μΓν)=ψL(ρ(Γμ)ν)=ρ(ψL(Γμ))ψL(ν)=ρ(ΓψL(μ))ψL(ν)=ψL(μ)ΓψL(ν).

    Therefore, ψL is a homomorphism of Hom-LeibLieAs from (L,[,],Γ,α) to (L,[,],Γ,α).

    It follows from Proposition 2.13, Theorem3.4 and Proposition 3.6 that there is a functor G:HLLAlgHLeib.

    In [17], Tang and Sheng established the cohomology theory and linear deformations of nonabelian embedding tensors on Lie algebras via the Loday-Pirashvili cohomology of Leibniz algebra. Developing some techniques in [17], this section introduces the cohomology theory of nonabelian ET on Hom-LieA via the Loday-Pirashvili cohomology of Hom-LeibA (see [6]). At last, as an application, we characterize the infinitesimal deformation by using the first cohomology.

    For n1, an n-cochain on a Hom-LeibA (L,[,]L,αL) with coefficients in a representation (V;l,r,β) is a linear map f:nLV satisfying βf=fαnL. The space generated by n-cochains is denoted as CnHLei(L,V). The coboundary map δ:CnHLei(L,V)Cn+1HLei(L,V), for x1,,xn+1L, as

    (δf)(x1,x2,,xn+1)=1j<kn+1(1)jf(αL(x1),,^xj,,αL(xk1),[xj,xk]L,αL(xk+1),,αL(xn+1))+nj=1(1)j+1l(αn1L(xj),f(x1,,^xj,,xn+1))+(1)n+1r(f(x1,,xn),αn1L(xn+1)).

    We denote by HHLei(L,V) the corresponding Loday-Pirashvili cohomology groups.

    One can refer to [6,9] for more information on Hom-LeibAs and (co)homology theory.

    Lemma 4.1. Let Γ be a nonabelian ET on the Hom-LieA (L,[,],α) w.r.t the coherent representation (L;ρ,α). Define two actions

    lΓ:LLL,rΓ:LLL,

    by

    lΓ(ν,a)=[Γν,a],rΓ(a,ν)=[a,Γν]Γρ(a)ν,

    for any νL,aL. Then, (L;lΓ,rΓ,α) is a representation of the descendent Hom-LeibA (L,[,]Γ,α).

    Proof. For all μ,νL and aL, by Eqs (2.2) and (2.7), we have

    lΓ(α(μ),α(a))=[Γα(μ),α(a)]=[α(Γμ),α(a)]=α([Γμ,a])=α(lΓ(μ,a)),rΓ(α(a),α(μ))=[α(a),Γα(μ)]Γρ(α(a))α(μ)=[α(a),α(Γμ)]Γα(ρ(a)μ)=α([a,Γμ])α(Γ(ρ(a)μ)=α(rΓ(a,μ)).

    By Eqs (2.1), (2.3), (2.4), (2.5), (2.7) and (2.8), we have

    rΓ(α(a),[μ,ν]Γ)rΓ(rΓ(a,μ),α(ν))lΓ(α(μ),rΓ(a,ν))=[α(a),Γ(ρ(Γμ)ν+[μ,ν])]Γρ(α(a))(ρ(Γμ)ν+[μ,ν])[[a,Γμ]Γρ(a)μ,Γα(ν)]+Γρ([a,Γμ]Γρ(a)μ)α(ν)[Γα(μ),[a,Γν]Γρ(a)ν]=[α(a),[Γμ,Γν]]Γρ(α(a))ρ(Γμ)νΓρ(α(a))[μ,ν][[a,Γμ],α(Γν)]+[Γρ(a)μ,Γα(ν)]+Γρ([a,Γμ])α(ν)Γρ(Γρ(a)μ)α(ν)[α(Γμ),[a,Γν]]+[Γα(μ),Γρ(a)ν]=Γρ(α(a))ρ(Γμ)νΓρ(α(a))[μ,ν]+Γρ(Γρ(a)μ)α(ν)+Γ[ρ(a)μ,α(ν)]+Γρ([a,Γμ])α(ν)Γρ(Γρ(a)μ)α(ν)+Γρ(Γα(μ))ρ(a)ν+Γ[α(μ),ρ(a)ν]=0,lΓ(α(μ),rΓ(a,ν))rΓ(lΓ(μ,a),α(ν))rΓ(α(a),[μ,ν]Γ)=[Γα(μ),[a,Γν]Γρ(a)ν][[Γμ,a],Γα(ν)]+Γρ([Γμ,a])α(ν)[α(a),Γ(ρ(Γμ)ν+[μ,ν])]+Γρ(α(a))(ρ(Γμ)ν+[μ,ν])=[α(Γμ),[a,Γν]][Γα(μ),Γρ(a)ν][[Γμ,a],α(Γν)]+Γρ([Γμ,a])α(ν)[α(a),[Γμ,Γν]]+Γρ(α(a))ρ(Γμ)ν+Γρ(α(a))[μ,ν]=Γρ(α(Γμ))ρ(a)νΓ[α(μ),ρ(a)ν]+Γρ([Γμ,a])α(ν)+Γρ(α(a))ρ(Γμ)ν+Γρ(α(a))[μ,ν]=0,lΓ(α(μ),lΓ(ν,a))lΓ([μ,ν]Γ,α(a))lΓ(α(ν),lΓ(μ,a))=[Γα(μ),[Γν,a]][Γ(ρ(Γμ)ν+[μ,ν]),α(a)][Γα(ν),[Γμ,a]]=[α(Γμ),[Γν,a]][[Γμ,Γν],α(a)][α(Γν),[Γμ,a]]=0.

    Thus, (L;lΓ,rΓ,α) is a representation of (L,[,]Γ,α).

    Let Γ be a nonabelian ET on (L,[,],α) w.r.t the coherent representation (L;ρ,α). When n1, let δΓ:CnΓ(L,L)Cn+1Γ(L,L), be the Loday-Pirashvili coboundary operator of the Hom-LeibA (L,[,]Γ,α) with coefficients in the representation (L;lΓ,rΓ,α). More precisely, for all fCnΓ(L,L),ν1,,νn+1L, we have

    (δΓf)(ν1,ν2,,νn+1)=1j<kn+1(1)jf(α(ν1),,^νj,,α(νk1),ρ(Γνj)νk+[νj,νk],α(νk+1),,α(νn+1))+nj=1(1)j+1[Γαn1(νj),f(ν1,,^νj,,νn+1)]+(1)n+1[f(ν1,,νn),Γαn1(νn+1)](1)n+1Γρ(f(ν1,,νn))αn1(νn+1).

    In particular, for fC1Γ(L,L):={θHom(L,L)|αθ=θα} and μ,νL, we have

    (δΓf)(μ,ν)=f(ρ(Γμ)ν)f([μ,ν])+[Γμ,f(ν)]+[f(μ),Γν]Γρ(f(μ))ν.

    Next, when n=0, in order to get the first cohomology group, we need additional conditions, that is, Hom-LieA is regular and the endomorphism in the representation of Hom-LieA is an automorphism.

    For any ξC0Γ(L,L):={ςL|α(ς)=ς}, we define δΓ:C0Γ(L,L)C1Γ(L,L),ξ(ξ) by

    (ξ)ν=Γρ(ξ)α1(ν)[ξ,Γα1(ν)],νL,

    where α:LL is a Hom-LieA isomorphism.

    Proposition 4.2. Let Γ be a nonabelian ET on the regular Hom-LieA (L,[,],α) w.r.t the regular coherent representation (L;ρ,α), Then, δΓ((a))=0, that is the composition C0Γ(L,L)δΓC1Γ(L,L)δΓC2Γ(L,L) is the zero map.

    Proof. For any μ,νL, by Eqs (2.1), (2.2), (2.3), (2.4), (2.7) and (2.8), we have

    (δΓ(ξ))(μ,ν)=(ξ)(ρ(Γμ)ν)(ξ)([μ,ν])+[Γμ,(ξ)(ν)]+[(ξ)(μ),Γν]Γρ((ξ)(μ))ν=Γρ(ξ)α1(ρ(Γμ)ν)+[ξ,Γα1(ρ(Γμ)ν)]Γρ(ξ)α1([μ,ν])+[ξ,Γα1([μ,ν])]+[Γμ,Γρ(ξ)α1(ν)[ξ,Γα1(ν)]]+[Γρ(ξ)α1(μ)[ξ,Γα1(μ)],Γν]Γρ(Γρ(ξ)α1(μ)[ξ,Γα1(μ)])ν=Γρ(ξ)ρ(Γα1(μ))α1(ν)+[ξ,Γρ(Γα1(μ))α1(ν)]Γρ(ξ)[α1(μ),α1(ν)]+[ξ,Γ[α1(μ),α1(ν)]]+[Γμ,Γρ(ξ)α1(ν)][Γμ,[ξ,Γα1(ν)]]+[Γρ(ξ)α1(μ),Γν][[ξ,Γα1(μ)],Γν]Γρ(Γρ(ξ)α1(μ))ν+Γρ([ξ,Γα1(μ)])ν=Γρ(ξ)ρ(Γα1(μ))α1(ν)Γρ(ξ)[α1(μ),α1(ν)]+[ξ,[Γα1(μ),Γα1(ν)]]+Γρ(Γμ)ρ(ξ)α1(ν)+Γ[μ,ρ(ξ)α1(ν)][α(Γα1(μ)),[ξ,Γα1(ν)]]+Γ[ρ(ξ)α1(μ),ν][[ξ,Γα1(μ)],α(Γα1(ν))]+Γρ([ξ,Γα1(μ)])ν=Γρ(ξ)ρ(Γα1(μ))α1(ν)+Γρ(α(Γα1(μ)))ρ(ξ)α1(ν)+Γρ([ξ,Γα1(μ)])νΓρ(ξ)[α1(μ),α1(ν)]+Γ[μ,ρ(ξ)α1(ν)]+Γ[ρ(ξ)α1(μ),ν]=0.

    Therefore, δΓ((ξ))=0.

    Definition 4.3. Let Γ be a nonabelian ET on (L,[,],α) w.r.t the coherent representation (L;ρ,α). The cohomology of the nonabelian ET on Hom-LieA is defined as the cohomology of the cochain complex (CΓ(L,L):=+n=0CnΓ(L,L),δΓ).

    For n1, we denote the set of n-cocycles by ZnΓ(L,L)={fCnΓ(L,L)|δΓf=0}, the set of n-coboundaries by BnΓ(L,L)={δΓf|fCn1Γ(L,L)} and the n-th cohomology group of the nonabelian ET Γ by HnΓ(L,L)=ZnΓ(L,L)/BnΓ(L,L).

    Finally, we study infinitesimal deformations of nonabelian ET on Hom-LieA by using the first cohomology group.

    Let (L,[,],α) be a Hom-LieA over K and K[t] be the polynomial ring in one variable t. Then, K[t]/(t2)L is an K[t]/(t2)-module. Moreover, K[t]/(t2)L is a Hom-LieA over K[t]/(t2), where the Hom-LieA structure is defined by

    [f1(t)a1,f2(t)a2]=f1(t)f2(t)[a1,a2],α(f1(t)a1)=f1(t)α(a1),

    for any f1(t),f2(t)K[t]/(t2) and a1,a2L. In the sequel, we denote f(t)a by f(t)a, where f(t)K[t]/(t2).

    Definition 4.4. Let Γ:LL be a nonabelian ET on (L,[,],α) w.r.t the coherent representation (L;ρ,α), and let I:LL be a linear map. If Γt=Γ+tI(modt2) satisfies

    Γtα=αΓt, (4.1)
    [Γtμ,Γtν]=Γt(ρ(Γtμ)ν+[μ,ν]), (4.2)

    for all μ,νL. Then, we say that I generates an infinitesimal deformation of the nonabelian ET Γ.

    Clearly Eqs (4.1) and (4.2) are equivalent to the following equations

    Iα=αI, (4.3)
    [Γμ,Iν]+[Iμ,Γν]=Iρ(Γμ)ν+Γρ(Iμ)ν+I[μ,ν], (4.4)
    [Iμ,Iν]=Iρ(Iμ)ν, (4.5)

    for all μ,νL. Thus, Γt is an infinitesimal deformation of Γ if and only if Eqs (4.3)–(4.5) hold. From Eqs (4.3) and (4.5) it follows that the map I is a ET on the Hom-LieA (L,[,,],α) w.r.t the representation (L;ρ,α) (see [20]).

    Proposition 4.5. Let Γt=Γ+tI is an infinitesimal deformation of a nonabelian ET Γ on (L,[,],α) w.r.t the coherent representation (L;ρ,α). Then I is a 1-cocycle of the nonabelian ET Γ. Moreover, the 1-cocycle I is called the infinitesimal of the infinitesimal deformation Γt of Γ.

    Proof. We observe that Eq (4.4) implies δΓI=0.

    Next, we discuss equivalent infinitesimal deformations.

    Definition 4.6. Let Γ:LL be a nonabelian ET on the regular Hom-LieA (L,[,],α) w.r.t the regular coherent representation (L;ρ,α). Two infinitesimal deformations Γ1t=Γ+tI1 and Γ2t=Γ+tI2 are said to be equivalent if there exists an element ξL such that α(ξ)=ξ and the pair (IdL+tα1(ad(ξ)),IdL+tα1(ρ(ξ))) is a homomorphism from LΓ2tL to LΓ1tL.

    Let's recall Definition 2.12 that the the pair (IdL+tα1(ad(ξ)),IdL+tα1(ρ(ξ))) is a homomorphism from LΓ2tL to LΓ1tL if the following conditions are true:

    (1) IdL+tα1(ad(ξ)):LL,xx+t[ξ,α1(x)] and IdL+tα1(ρ(ξ)):LL,νν+tρ(ξ)α1(ν) are two Hom-LieA homomorphisms,

    (2) ρ(x)ν+tα1(ρ(ξ)ρ(x)ν)=ρ(x+tα1(ad(ξ)x))(ν+tα1(ρ(ξ)ν)),

    (3) (Γ+tI1)(ν+tα1(ρ(ξ)ν))=(IdL+tα1(ad(ξ)))(Γν+tI2ν), xL,νL.

    By the condition (1), we have

    [[ξ,α1(x)],[ξ,α1(y)]]=0,x,yL. (4.6)

    From the condition (2), we get

    ρ([ξ,α1(x)])ρ(ξ)α1(ν)=0,xL,νL. (4.7)

    From the condition (3), we have the following proposition.

    Proposition 4.7. Let Γ be a nonabelian ET on the regular Hom-LieA (L,[,],α) w.r.t the regular coherent representation (L;ρ,α). If two infinitesimal deformations Γ1t=Γ+tI1 and Γ2t=Γ+tI2 of Γ are equivalent, then I1 and I2 belong to the same cohomology class in H1Γ(L,L).

    Proof. When we compare the t1 coefficients on both sides of the above condition (3), we can get

    I2νI1ν=Γα1(ρ(ξ)ν)α1([ξ,Γν])=Γρ(ξ)α1(ν)[a,Γα1(ν)]=(ξ)νB1Γ(L,L), (4.8)

    this means that I2 and I1 belong to the same cohomology class in H1Γ(L,L).

    Conversely, any 1-cocycle I1 gives rise to the infinitesimal deformation Γ1t=Γ+tI1. In addition, cohomologous 1-cocycles correspond to equivalent infinitesimal deformations. To sum up, we get the following result.

    Theorem 4.8. Let Γ:LL be a nonabelian ET on the regular Hom-LieA (L,[,],α) w.r.t the regular coherent representation (L;ρ,α). Then, there is a bijection between the set of all equivalence classes of infinitesimal deformations of Γ and the first cohomology group H1Γ(L,L).

    Definition 4.9. Let Γ be a nonabelian ET on the regular Hom-LieA (L,[,],α) w.r.t the regular coherent representation (L;ρ,α). An infinitesimal deformation Γt=Γ+tI is said to be trivial if it is equivalent to the deformation Γ.

    Definition 4.10. Let Γ be a nonabelian ET on the regular Hom-LieA (L,[,],α) w.r.t the regular coherent representation (L;ρ,α). An element ξL is called a Nijenhuis element associated to the nonabelian ET Γ if ξ satisfies α(ξ)=ξ, Eqs (4.6), (4.7) and the equation

    [ξ,Γρ(ξ)α1(ν)[ξ,Γα1(ν)]]=0,νL. (4.9)

    The set of all Nijenhuis elements is denoted as Nij(Γ).

    According to Eqs (4.6)–(4.8), a trivial infinitesimal deformation will produce a Nijenhuis element. On the contrary, a Nijenhuis element can also produce a trivial infinitesimal deformation, as shown in the following theorem.

    Theorem 4.11. Let Γ:LL be a nonabelian ET on the regular Hom-LieA (L,[,],α) w.r.t the regular coherent representation (L;ρ,α). For any ξNij(Γ), the infinitesimal deformation Γt=Γ+tI generated by I:=(ξ) is a trivial deformation of Γ.

    Proof. First, we need to show that I satisfies Eqs (4.3)–(4.5). Obviously, for all μ,νL, we have

    αI=α(ξ)=(ξ)α=Iα,[Γμ,Iν]+[Iμ,Γν]Iρ(Γμ)νΓρ(Iμ)νI[μ,ν]=[Γμ,(ξ)ν]+[(ξ)μ,Γν](ξ)ρ(Γμ)νΓρ((ξ)μ)ν(ξ)[μ,ν]=0,(byProposition4.2)[Iμ,Iν]Iρ(Iμ)ν=[(ξ)μ,(ξ)ν](ξ)ρ((ξ)μ)ν=[Γρ(ξ)α1(μ)[ξ,Γα1(μ)],Γρ(ξ)α1(ν)[ξ,Γα1(ν)]]Γρ(ξ)α1(ρ(Γρ(ξ)α1(μ)[ξ,Γα1(μ)])ν)+[ξ,Γα1(ρ(Γρ(ξ)α1(μ)[ξ,Γα1(μ)])ν)]=[Γρ(ξ)α1(μ),Γρ(ξ)α1(ν)]+[[ξ,Γα1(μ)],[ξ,Γα1(ν)]][Γρ(ξ)α1(μ),[ξ,Γα1(ν)]][[ξ,Γα1(μ)],Γρ(ξ)α1(ν)]Γρ(ξ)α1(ρ(Γρ(ξ)α1(μ))ν)+Γρ(ξ)α1(ρ([ξ,Γα1(μ)])ν)+[ξ,α1Γ(ρ(Γρ(ξ)α1(μ)[ξ,Γα1(μ)])ν)]=0.(byEqs(4.6),(4.7)and(4.9))

    Thus, Γt=Γ+tI is an infinitesimal deformation of Γ.

    Next, we need to show that the infinitesimal deformation Γt is trivial. By ξNij(Γ), it immediately follows that the pair (IdL+tα1(ad(ξ)),IdL+tα1(ρ(ξ))) is a homomorphism from LΓtL to LΓL.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The paper is supported by the Science and Technology Program of Guizhou Province (No. ZK[2022]031), The Scientific Research Foundation of Guizhou University of Finance and Economics (No.2022KYYB08), The NSF of China (No. 12161013).

    The authors declare no conflict of interest in this paper.



    [1] J. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036 doi: 10.1016/j.jalgebra.2005.07.036
    [2] D. Larsson, S. Silvestrov, Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra, 288 (2005), 321–344. https://doi.org/10.1016/j.jalgebra.2005.02.032 doi: 10.1016/j.jalgebra.2005.02.032
    [3] D. Larsson, S. Silvestrov, Graded quasi-Lie algebras, Czecho. J. Phys., 55 (2005), 1473–1478. https://doi.org/10.1007/s10582-006-0028-3 doi: 10.1007/s10582-006-0028-3
    [4] S. Benayadi, A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear form, J. Geom. Phys., 76 (2014), 38–60. https://doi.org/10.1016/j.geomphys.2013.10.010 doi: 10.1016/j.geomphys.2013.10.010
    [5] F. Ammar, Z. Ejbehi, A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21 (2011), 813–836.
    [6] Y. Cheng, Y. Su, (Co)homology and universal central extension of Hom-Leibniz algebras, Acta Math. Sin. (English Ser.), 27 (2011), 813–830. https://doi.org/10.1007/s10114-011-9626-5 doi: 10.1007/s10114-011-9626-5
    [7] Y. Sheng, C. Bai, A new approach to Hom-Lie bialgebras, J. Algebra, 399 (2014), 232–250. https://doi.org/10.1016/j.jalgebra.2013.08.046 doi: 10.1016/j.jalgebra.2013.08.046
    [8] A. Makhlouf, S. Silvestrov, Hom-algebra structures. J. Gen. Lie Theory Appl., 2 (2008), 51–64. https://doi.org/10.4303/jglta/S070206 doi: 10.4303/jglta/S070206
    [9] A. Makhlouf, S. Silvestrov, Notes on formal deformations of Hom-associative and Hom-Lie algebras, Forum Math., 22 (2010), 715–739. https://doi.org/10.1515/FORUM.2010.040 doi: 10.1515/FORUM.2010.040
    [10] Y. Sheng, Representations of Hom-Lie algebras, Alg. Repres. Theo., 15 (2012), 1081–1098. https://doi.org/10.1007/s10468-011-9280-8 doi: 10.1007/s10468-011-9280-8
    [11] H. Nicolai, H. Samtleben, Maximal gauged supergravity in three dimensions, Phys. Rev. Lett., 86 (2001), 1686–1689. https://doi.org/10.1103/PhysRevLett.86.1686 doi: 10.1103/PhysRevLett.86.1686
    [12] E. Bergshoeff, M. deRoo, O. Hohm, Multiple M2-branes and the embedding tensor, Classical Quantum Gravity, 25 (2008), 142001. https://doi.org/10.1088/0264-9381/25/14/142001 doi: 10.1088/0264-9381/25/14/142001
    [13] M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys., 54 (2000), 263–277. https://doi.org/10.1023/A:1010818119040 doi: 10.1023/A:1010818119040
    [14] A. Das, Controlling structures, deformations and homotopy theory for averaging algebras, arXiv preprint, 2023, arXiv: 2303.17798. https://doi.org/10.48550/arXiv.2303.17798
    [15] Y. Sheng, R. Tang, C. Zhu, The controlling L-algebra, cohomology and homotopy of embedding tensors and Lie-Leibniz triples, Comm. Math. Phys., 386 (2021), 269–304. https://doi.org/10.1007/s00220-021-04032-y doi: 10.1007/s00220-021-04032-y
    [16] M. Hu, S. Hou, L. Song, Y. Zhou, Deformations and cohomologies of embedding tensors on 3-Lie algebras, arXiv preprint, 2023, arXiv: 2302.08725. https://doi.org/10.48550/arXiv.2302.08725
    [17] R. Tang, Y. Sheng, Nonabelian embedding tensors, Lett. Math. Phys., 113 (2023), 14. https://doi.org/10.1007/s11005-023-01637-3 doi: 10.1007/s11005-023-01637-3
    [18] S. Mishra, A. Naolekar, O-operators on hom-Lie algebras, J. Math. Phys., 61 (2020), 121701. https://doi.org/10.1063/5.0026719 doi: 10.1063/5.0026719
    [19] A. Das, S. Sen, Nijenhuis operators on Hom-Lie algebras, Commun. Algebra, 50 (2022), 1038–1054. https://doi.org/10.1080/00927872.2021.1977942 doi: 10.1080/00927872.2021.1977942
    [20] A. Das, A. Makhlouf, Embedding tensors on Hom-Lie algebras, arXiv preprint, 2023, arXiv: 2304.04178. https://doi.org/10.48550/arXiv.2304.04178
  • This article has been cited by:

    1. Wen Teng, Xiansheng Dai, Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras, 2025, 33, 2688-1594, 1367, 10.3934/era.2025063
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1735) PDF downloads(80) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog