In this paper, we generalize known results of nonabelian embedding tensor to the Hom setting. We introduce the concept of Hom-Leibniz-Lie algebra, which is the basic algebraic structure of nonabelian embedded tensors on Hom-Lie algebras and can also be regarded as a nonabelian generalization of Hom-Leibniz algebra. Moreover, we define a cohomology of nonabelian embedding tensors on Hom-Lie algebras with coefficients in a suitable representation. The first cohomology group is used to describe infinitesimal deformations as an application. In addition, Nijenhuis elements are used to describe trivial infinitesimal deformations.
Citation: Wen Teng, Jiulin Jin, Yu Zhang. Cohomology of nonabelian embedding tensors on Hom-Lie algebras[J]. AIMS Mathematics, 2023, 8(9): 21176-21190. doi: 10.3934/math.20231079
In this paper, we generalize known results of nonabelian embedding tensor to the Hom setting. We introduce the concept of Hom-Leibniz-Lie algebra, which is the basic algebraic structure of nonabelian embedded tensors on Hom-Lie algebras and can also be regarded as a nonabelian generalization of Hom-Leibniz algebra. Moreover, we define a cohomology of nonabelian embedding tensors on Hom-Lie algebras with coefficients in a suitable representation. The first cohomology group is used to describe infinitesimal deformations as an application. In addition, Nijenhuis elements are used to describe trivial infinitesimal deformations.
[1] | J. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036 doi: 10.1016/j.jalgebra.2005.07.036 |
[2] | D. Larsson, S. Silvestrov, Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra, 288 (2005), 321–344. https://doi.org/10.1016/j.jalgebra.2005.02.032 doi: 10.1016/j.jalgebra.2005.02.032 |
[3] | D. Larsson, S. Silvestrov, Graded quasi-Lie algebras, Czecho. J. Phys., 55 (2005), 1473–1478. https://doi.org/10.1007/s10582-006-0028-3 doi: 10.1007/s10582-006-0028-3 |
[4] | S. Benayadi, A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear form, J. Geom. Phys., 76 (2014), 38–60. https://doi.org/10.1016/j.geomphys.2013.10.010 doi: 10.1016/j.geomphys.2013.10.010 |
[5] | F. Ammar, Z. Ejbehi, A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21 (2011), 813–836. |
[6] | Y. Cheng, Y. Su, (Co)homology and universal central extension of Hom-Leibniz algebras, Acta Math. Sin. (English Ser.), 27 (2011), 813–830. https://doi.org/10.1007/s10114-011-9626-5 doi: 10.1007/s10114-011-9626-5 |
[7] | Y. Sheng, C. Bai, A new approach to Hom-Lie bialgebras, J. Algebra, 399 (2014), 232–250. https://doi.org/10.1016/j.jalgebra.2013.08.046 doi: 10.1016/j.jalgebra.2013.08.046 |
[8] | A. Makhlouf, S. Silvestrov, Hom-algebra structures. J. Gen. Lie Theory Appl., 2 (2008), 51–64. https://doi.org/10.4303/jglta/S070206 doi: 10.4303/jglta/S070206 |
[9] | A. Makhlouf, S. Silvestrov, Notes on formal deformations of Hom-associative and Hom-Lie algebras, Forum Math., 22 (2010), 715–739. https://doi.org/10.1515/FORUM.2010.040 doi: 10.1515/FORUM.2010.040 |
[10] | Y. Sheng, Representations of Hom-Lie algebras, Alg. Repres. Theo., 15 (2012), 1081–1098. https://doi.org/10.1007/s10468-011-9280-8 doi: 10.1007/s10468-011-9280-8 |
[11] | H. Nicolai, H. Samtleben, Maximal gauged supergravity in three dimensions, Phys. Rev. Lett., 86 (2001), 1686–1689. https://doi.org/10.1103/PhysRevLett.86.1686 doi: 10.1103/PhysRevLett.86.1686 |
[12] | E. Bergshoeff, M. deRoo, O. Hohm, Multiple M2-branes and the embedding tensor, Classical Quantum Gravity, 25 (2008), 142001. https://doi.org/10.1088/0264-9381/25/14/142001 doi: 10.1088/0264-9381/25/14/142001 |
[13] | M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys., 54 (2000), 263–277. https://doi.org/10.1023/A:1010818119040 doi: 10.1023/A:1010818119040 |
[14] | A. Das, Controlling structures, deformations and homotopy theory for averaging algebras, arXiv preprint, 2023, arXiv: 2303.17798. https://doi.org/10.48550/arXiv.2303.17798 |
[15] | Y. Sheng, R. Tang, C. Zhu, The controlling L$_{\infty}$-algebra, cohomology and homotopy of embedding tensors and Lie-Leibniz triples, Comm. Math. Phys., 386 (2021), 269–304. https://doi.org/10.1007/s00220-021-04032-y doi: 10.1007/s00220-021-04032-y |
[16] | M. Hu, S. Hou, L. Song, Y. Zhou, Deformations and cohomologies of embedding tensors on 3-Lie algebras, arXiv preprint, 2023, arXiv: 2302.08725. https://doi.org/10.48550/arXiv.2302.08725 |
[17] | R. Tang, Y. Sheng, Nonabelian embedding tensors, Lett. Math. Phys., 113 (2023), 14. https://doi.org/10.1007/s11005-023-01637-3 doi: 10.1007/s11005-023-01637-3 |
[18] | S. Mishra, A. Naolekar, $\mathcal{O}$-operators on hom-Lie algebras, J. Math. Phys., 61 (2020), 121701. https://doi.org/10.1063/5.0026719 doi: 10.1063/5.0026719 |
[19] | A. Das, S. Sen, Nijenhuis operators on Hom-Lie algebras, Commun. Algebra, 50 (2022), 1038–1054. https://doi.org/10.1080/00927872.2021.1977942 doi: 10.1080/00927872.2021.1977942 |
[20] | A. Das, A. Makhlouf, Embedding tensors on Hom-Lie algebras, arXiv preprint, 2023, arXiv: 2304.04178. https://doi.org/10.48550/arXiv.2304.04178 |