The local convergence analysis of the parameter based sixth-order iterative method is the primary focus of this article. This investigation was conducted based on the Fréchet derivative of the first order that satisfies the Lipschitz continuity condition. In addition, we developed a conceptual radius of convergence for these methods. Also, we discussed the solution behavior of complex polynomials with the basin of attraction. Finally, some numerical examples are provided to illustrate how the conclusions we got can be employed to determine the iterative approach's radius of convergence ball in the context of solving nonlinear equations. We compare the numerical results with our method and the existing sixth order methods proposed by Argyros et al. We observe that using our method yields significantly larger balls than those that already exist.
Citation: Kasmita Devi, Prashanth Maroju. Complete study of local convergence and basin of attraction of sixth-order iterative method[J]. AIMS Mathematics, 2023, 8(9): 21191-21207. doi: 10.3934/math.20231080
The local convergence analysis of the parameter based sixth-order iterative method is the primary focus of this article. This investigation was conducted based on the Fréchet derivative of the first order that satisfies the Lipschitz continuity condition. In addition, we developed a conceptual radius of convergence for these methods. Also, we discussed the solution behavior of complex polynomials with the basin of attraction. Finally, some numerical examples are provided to illustrate how the conclusions we got can be employed to determine the iterative approach's radius of convergence ball in the context of solving nonlinear equations. We compare the numerical results with our method and the existing sixth order methods proposed by Argyros et al. We observe that using our method yields significantly larger balls than those that already exist.
[1] | C. Chun, B. Neta, Developing high order methods for the solution of systems of nonlinear equations, Appl. Math. Comput., 342 (2019), 178–190. https://doi.org/10.1016/j.amc.2018.09.032 doi: 10.1016/j.amc.2018.09.032 |
[2] | H. Montazeri, F. Soleymani, S. Shateyi, S. S. Motsa, On a new method for computing the numerical solution of systems of nonlinear equations, J. Appl. Math., 2012 (2012), 751975. https://doi.org/10.1155/2012/751975 doi: 10.1155/2012/751975 |
[3] | S. Abbasbandy, P. Bakhtiari, A. Cordero, J. R. Torregrosa, T. Lotfi, New efficient methods for solving nonlinear systems of equations with arbitrary even order, Appl. Math. Comput., 287–288 (2016), 94–103. https://doi.org/10.1016/j.amc.2016.04.038 doi: 10.1016/j.amc.2016.04.038 |
[4] | I. K. Argyros, Á. A. Magreñán, A study on the local convergence and the dynamics of Chebyshev-Halley-Type methods free from second derivative, Numer. Algor., 71 (2016), 1–23. http://doi.org/10.1007/s11075-015-9981-x doi: 10.1007/s11075-015-9981-x |
[5] | L. V. Kantorovich, G. P. Akilov, Functional analysis, Oxford: Pergamon Press, 1982. https://doi.org/10.1016/C2013-0-03044-7 |
[6] | L. B. Rall, Computational solution of nonlinear operator equations, New York: Robert E. Krieger, 1979. |
[7] | A. S. Alshomrani, R. Behl, P. Maroju, Local convergence of parameter based method with six and eighth order of convergence, J. Math. Chem., 58 (2020), 841–853. https://doi.org/10.1007/s10910-020-01113-6 doi: 10.1007/s10910-020-01113-6 |
[8] | I. K. Argyros, S. George, Local convergence for an almost sixth order method for solving equations under weak conditions, SeMA, 75 (2018), 163–171. https://doi.org/10.1007/s40324-017-0127-z doi: 10.1007/s40324-017-0127-z |
[9] | I. K. Argyros, S. K. Khattri, S. George, Local convergence of an at least sixth-order method in Banach spaces, J. Fixed Point Theory Appl., 21 (2019), 23. https://doi.org/10.1007/s11784-019-0662-6 doi: 10.1007/s11784-019-0662-6 |
[10] | P. Maroju, Á. A. Magreñán, Í. Sarría, A. Kumar, Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces, J. Math. Chem., 58 (2020), 686–705. https://doi.org/10.1007/s10910-019-01097-y doi: 10.1007/s10910-019-01097-y |
[11] | S. Singh, E. Martínez, P. Maroju, R. Behl, A study of the local convergence of a fifth order iterative method, Indian J. Pure Appl. Math., 51 (2020), 439–455. https://doi.org/10.1007/s13226-020-0409-5 doi: 10.1007/s13226-020-0409-5 |
[12] | I. K. Argyros, S. George, Local convergence of deformed Halley method in Banach space under Holder continuity conditions, J. Nonlinear Sci. Appl., 8 (2015), 246–254. http://doi.org/10.22436/jnsa.008.03.09 doi: 10.22436/jnsa.008.03.09 |
[13] | A. A. Magrenãn, I. K. Argyros, On the local convergence and the dynamics of Chebyshev-Halley methods with six and eight order of convergence, J. Comput. Appl. Math., 298 (2016), 236–251. https://doi.org/10.1016/j.cam.2015.11.036 doi: 10.1016/j.cam.2015.11.036 |
[14] | A. S. Alshomrani, R. Behl, P. Maroju, Local convergence of parameter based method with six and eighth order of convergence, J. Math. Chem., 58 (2020), 841–853. https://doi.org/10.1007/s10910-020-01113-6 doi: 10.1007/s10910-020-01113-6 |
[15] | J. R. Sharma, R. K. Guha, R. Sharma, An efficient fourth order weighted-Newton method for systems of nonlinear equations, Numer. Algor., 62 (2013), 307–323. https://doi.org/10.1007/s11075-012-9585-7 doi: 10.1007/s11075-012-9585-7 |
[16] | F. Soleymani, Regarding the accuracy of optimal eighth-order methods, Math. Comput. Model., 53 (2011), 1351–1357. https://doi.org/10.1016/j.mcm.2010.12.032 doi: 10.1016/j.mcm.2010.12.032 |
[17] | M. Scott, B. Neta, C. Chun, Basins attractors for various methods, Appl. Math. Comput., 218 (2011), 2584–2599. https://doi.org/10.1016/j.amc.2011.07.076 doi: 10.1016/j.amc.2011.07.076 |
[18] | R. Behl, P. Maroju, S. S. Motsa, A family of second derivative free fourth order continuation method for solving nonlinear equations, J. Comput. Appl. Math., 318 (2017), 38–46. https://doi.org/10.1016/j.cam.2016.12.008 doi: 10.1016/j.cam.2016.12.008 |
[19] | R. Behl, S. S. Motsa, Geometric construction of eighth-order optimal families of Ostrowski's method, Sci. World J., 2015 (2015), 614612. https://doi.org/10.1155/2015/614612 doi: 10.1155/2015/614612 |
[20] | S. M. Kang, S. M. Ramay, M. Tanveer, W. Nazeer, Polynomiography via an iterative method corresponding to Simpsons 1/3 rule, J. Nonlinear Sci. Appl., 9 (2016), 967–976. http://doi.org/10.22436/jnsa.009.03.25 doi: 10.22436/jnsa.009.03.25 |
[21] | I. K. Argyros, S. George, Local convergence of deformed Halley method in Banach space under Holder continuity conditions, J. Nonlinear Sci. Appl., 8 (2015), 246–254. http://doi.org/10.22436/jnsa.008.03.09 doi: 10.22436/jnsa.008.03.09 |
[22] | A. S. Alshomrani, I. K. Argyros, R. Behl, An optimal reconstruction of Chebyshev-Halley-Type methods with local convergence analysis, Int. J. Comp. Meth., 17 (2020), 1940017. https://doi.org/10.1142/S0219876219400176 doi: 10.1142/S0219876219400176 |