We investigate a non-autonomous discrete-time SIRS epidemic model with nonlinear incidence rate and distributed delays combined with a nonlinear recovery rate taken into account the impact of health care resources. Two threshold parameters $ \mathcal{R}_0, \mathcal{R}_\infty $ are obtained so that the disease dies out when $ \mathcal{R}_0 < 1 $; and the infective persists indefinitely when $ \mathcal{R}_\infty > 1 $.
Citation: Butsayapat Chaihao, Sujin Khomrutai. Extinction and permanence of a general non-autonomous discrete-time SIRS epidemic model[J]. AIMS Mathematics, 2023, 8(4): 9624-9646. doi: 10.3934/math.2023486
We investigate a non-autonomous discrete-time SIRS epidemic model with nonlinear incidence rate and distributed delays combined with a nonlinear recovery rate taken into account the impact of health care resources. Two threshold parameters $ \mathcal{R}_0, \mathcal{R}_\infty $ are obtained so that the disease dies out when $ \mathcal{R}_0 < 1 $; and the infective persists indefinitely when $ \mathcal{R}_\infty > 1 $.
[1] | P. G. Barrientos, J. A. Rodríguez, A. Ruiz-Herrera, Chaotic dynamics in the seasonally forced SIR epidemic model, J. Math. Biol., 75 (2017), 1655–1668. https://doi.org/10.1007/s00285-017-1130-9 doi: 10.1007/s00285-017-1130-9 |
[2] | V. Capasso, G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8 |
[3] | T. Enatsu, Y. Nakata, Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, Nonlinear Anal.: Real World Appl., 13 (2012), 2120–2133. https://doi.org/10.1016/j.nonrwa.2012.01.007 doi: 10.1016/j.nonrwa.2012.01.007 |
[4] | Y. Gu, S. Ullah, M. A. Khan, M. Y. Alshahrani, M. Abohassan, M.B. Riaz, Mathematical modeling and stability analysis of the COVID-19 with quarantine and isolation, Results Phys., 34 (2022), 105284. https://doi.org/10.1016/j.rinp.2022.105284 doi: 10.1016/j.rinp.2022.105284 |
[5] | H. F. Huo, Z. P. Ma, Dynamics of a delayed epidemic model with non-monotonic incidence rate, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 459–468. https://doi.org/10.1016/j.cnsns.2009.04.018 doi: 10.1016/j.cnsns.2009.04.018 |
[6] | Z. Jiang, W. Ma, Permanence of a delayed SIR epidemic model with general nonlinear incidence rate, Math. Meth. Appl. Sci., 38 (2015), 505–516. https://doi.org/10.1002/mma.3083 doi: 10.1002/mma.3083 |
[7] | M. A. Khan, A. Atangana, Mathematical modeling and analysis of COVID-19: A study of new variant Omicron, Phys. A: Stat. Mech. Appl., 599 (2022), 127452. https://doi.org/10.1016/j.physa.2022.127452 doi: 10.1016/j.physa.2022.127452 |
[8] | M. Lu, J. Huang, S. Ruan, P. Yu, Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate, J. Differ. Equ., 267 (2019), 1859–1898. https://doi.org/10.1016/j.jde.2019.03.005 doi: 10.1016/j.jde.2019.03.005 |
[9] | J. P. S. Mauŕicio de Carvalho, A. A. P. Rodrigues, Strange attractors in a dynamical system inspired by a seasonally forced SIR model, Phys. D: Nonlinear Phenom., 434 (2022), 133268. https://doi.org/10.1016/j.physd.2022.133268 doi: 10.1016/j.physd.2022.133268 |
[10] | R. E. Mickens, Nonstandard finite difference models of differential equations, Singapore: World Scientific, 1994. https://doi.org/10.1142/2081 |
[11] | Y. Muroya, Y. Enatsu, Y. Nakata, Monotone iterative techniques to SIRS epidemic models with nonlinear incidence rate and distributed delays, Nonlinear Anal.: Real World Appl., 12 (2011), 1897–1910. https://doi.org/10.1016/j.nonrwa.2010.12.002 doi: 10.1016/j.nonrwa.2010.12.002 |
[12] | Y. Nakata, Y. Enatsu, Y. Muroya, On the global stability of an SIRS epidemic model with distributed delays, Conference Publications, 2011(Special), 1119–1128. https://doi.org/10.3934/proc.2011.2011.1119 |
[13] | S. Ottaviano, M. Sensi, S. Sottile, Global stability of SAIRS epidemic models, Nonlinear Anal.: Real World Appl., 65 (2022), 103501. https://doi.org/10.1016/j.nonrwa.2021.103501 doi: 10.1016/j.nonrwa.2021.103501 |
[14] | M. Sekiguchi, Permanence of a discrete SIRS epidemic model with time delays, Appl. Math. Lett., 23 (2010), 1280–1285. https://doi.org/10.1016/j.aml.2010.06.013 doi: 10.1016/j.aml.2010.06.013 |
[15] | M. Sekiguchi, E. Ishiwata, Global dynamics of a discretized SIRS epidemic model with time delay, J. Math. Anal. Appl., 371 (2010), 195–202. https://doi.org/10.1016/j.jmaa.2010.05.007 doi: 10.1016/j.jmaa.2010.05.007 |
[16] | C. Shan, H. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds, J. Differ. Equ., 257 (2014), 1662–1688. https://doi.org/10.1016/j.jde.2014.05.030 doi: 10.1016/j.jde.2014.05.030 |
[17] | Z. Teng, L. Wang, L. Nie, Global attractivity for a class of delayed discrete SIRS epidemic models with general nonlinear incidence rate, Math. Meth. Appl. Sci., 38 (2015), 4741–4759. https://doi.org/10.1002/mma.3389 doi: 10.1002/mma.3389 |
[18] | W. Wang, Global behavior of an SEIRS epidemic model with time delays, Appl. Math. Lett., 15 (2002), 423–428. https://doi.org/10.1016/S0893-9659(01)00153-7 doi: 10.1016/S0893-9659(01)00153-7 |
[19] | D. Xiao, S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419–429. https://doi.org/10.1016/j.mbs.2006.09.025 doi: 10.1016/j.mbs.2006.09.025 |
[20] | D. Xiao, Y. Zhou, Qualitative analysis of an epidemic model, Can. Appl. Math. Q., 14 (2006), 469–492. |
[21] | J. Xu, Z. Teng, S. Gao, Almost sufficient and necessary conditions for permanence and extinction of nonautonomous discrete logistitc systems with time-varying delays and feedback control, Appl. Math-Czech, 56 (2011), 207–225. https://doi.org/10.1007/s10492-011-0003-6 doi: 10.1007/s10492-011-0003-6 |
[22] | Y. Xu, L. Wei, X. Jiang, Complex dynamics of a SIRS epidemic model with the influence of hospital bed number, Discrete Contin. Dynam. Syst. Ser. B, 56 (2021), 6229–6252. http://doi.org/10.3934/dcdsb.2021016 doi: 10.3934/dcdsb.2021016 |
[23] | L. Zhang, X. Fan, Z. Teng, Global dynamics of a nonautonomous SEIRS epidemic model with vaccination and nonlinear incidence, Math. Meth. Appl. Sci., 44 (2021), 9315–9333. https://doi.org/10.1002/mma.7359 doi: 10.1002/mma.7359 |
[24] | T. Zhang, Permanence and extinction in a nonautonomous discrete SIRVS epidemic model with vaccination, Appl. Math. Comput., 271 (2015), 716–729. https://doi.org/10.1016/j.amc.2015.09.071 doi: 10.1016/j.amc.2015.09.071 |
[25] | T. Zhang, Z. Teng, Permanence and extinction for a nonautonomous SIRS epidemic model with time delay, Appl. Math. Model., 33 (2009), 1058–1071. https://doi.org/10.1016/j.apm.2007.12.020 doi: 10.1016/j.apm.2007.12.020 |
[26] | T. Zhang, J. Liu, Z. Teng, Dynamic behavior for a nonautonomous SIRS epidemic model with distributed delays, Appl. Math. Comput., 214 (2009), 624–631. https://doi.org/10.1016/j.amc.2009.04.029 doi: 10.1016/j.amc.2009.04.029 |
[27] | T. Zhang, J. Liu, Z. Teng, Threshold conditions for a discrete nonautonomous SIRS model, Math. Meth. Appl. Sci., 38 (2015), 1781–1794. https://doi.org/10.1002/mma.3186 doi: 10.1002/mma.3186 |