In this paper, we introduce the concept and representations of modified $ \lambda $-differential Hom-Lie algebras. We then develop the cohomology of modified $ \lambda $-differential Hom-Lie algebras with coefficients in a suitable representation. As applications, abelian extensions and skeletal modified $ \lambda $-differential Hom-Lie 2-algebras are characterized in terms of cohomology groups.
Citation: Yunpeng Xiao, Wen Teng. Representations and cohomologies of modified $ \lambda $-differential Hom-Lie algebras[J]. AIMS Mathematics, 2024, 9(2): 4309-4325. doi: 10.3934/math.2024213
In this paper, we introduce the concept and representations of modified $ \lambda $-differential Hom-Lie algebras. We then develop the cohomology of modified $ \lambda $-differential Hom-Lie algebras with coefficients in a suitable representation. As applications, abelian extensions and skeletal modified $ \lambda $-differential Hom-Lie 2-algebras are characterized in terms of cohomology groups.
[1] | J. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036 doi: 10.1016/j.jalgebra.2005.07.036 |
[2] | N. Hu, $q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations, Algebra Colloq., 6 (1999), 51–70. https://doi.org/10.48550/arXiv.math/0512526 doi: 10.48550/arXiv.math/0512526 |
[3] | S. Benayadi, A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys., 76 (2014), 38–60. https://doi.org/10.1016/j.geomphys.2013.10.010 doi: 10.1016/j.geomphys.2013.10.010 |
[4] | Y. Sheng, D. Chen, Hom-Lie 2-algebras, J. Algebra, 376 (2013), 174–195. https://doi.org/10.1016/j.jalgebra.2012.11.032 |
[5] | Y. Sheng, C. Bai, A new approach to Hom-Lie bialgebras, J. Algebra, 399 (2014), 232–250. https://doi.org/10.1016/j.jalgebra.2013.08.046 doi: 10.1016/j.jalgebra.2013.08.046 |
[6] | Y. Sheng, Representations of Hom-Lie algebras, Algebr. Represent. Th., 15 (2012), 1081–1098. https://doi.org/10.1007/s10468-011-9280-8 doi: 10.1007/s10468-011-9280-8 |
[7] | L. Cai, Y. Sheng, Purely Hom-Lie bialgebra, Sci. China Math., 61 (2018), 1553–1566. https://doi.org/10.1007/s11425-016-9102-y |
[8] | J. M. Casas, X. Martínez, Abelian extensions and crossed modules of Hom-Lie algebras, J. Pure Appl. Algebra, 224 (2018), 987–1008. https://doi.org/10.1016/j.jpaa.2019.06.018 doi: 10.1016/j.jpaa.2019.06.018 |
[9] | L. Song, R. Tang, Derivation Hom-Lie 2-algebras and non-abelian extensions of regular Hom-Lie algebras, J. Algebra Appl., 17 (2018), 1850081. https://doi.org/10.1142/S0219498818500810 doi: 10.1142/S0219498818500810 |
[10] | M. S. T. Shansky, What is a classical r-matrix? Funct. Anal. Appl.+, 17 (1983), 259–272. https://doi.org/10.1007/BF01076717 |
[11] | J. Jiang, Y. Sheng, Cohomologies and deformations of modified $r$-matrices, arXiv Preprint, 2022. https://doi.org/10.48550/arXiv.2206.00411 |
[12] | X. Peng, Y. Zhang, X. Gao, Y. Luo, Universal enveloping of (modified) $\lambda$-differential Lie algebras, Linear Multilinear A., 70 (2022), 1102–1127. https://doi.org/10.1080/03081087.2020.1753641 doi: 10.1080/03081087.2020.1753641 |
[13] | A. Das, A cohomological study of modified Rota-Baxter algebras, arXiv Preprint, 2022. https://doi.org/10.48550/arXiv.2207.02273 |
[14] | Y. Li, D. Wang, Cohomology and Deformation theory of modified Rota-Baxter Leibniz algebras, arXiv Preprint, 2022. https://doi.org/10.48550/arXiv.2211.09991 |
[15] | B. Mondal, R. Saha, Cohomology of modified Rota-Baxter Leibniz algebra of weight $\kappa$, arXiv Preprint, 2022. https://doi.org/10.48550/arXiv.2211.07944 |
[16] | W. Teng, F. Long, Y. Zhang, Cohomologies of modified $\lambda$-differential Lie triple systems and applications, AIMS Math., 8 (2023), 25079–25096. https://doi.org/10.3934/math.20231280 doi: 10.3934/math.20231280 |
[17] | W. Teng, H. Zhang, Deformations and extensions of modified $\lambda$-differential 3-Lie algebras, Mathematics, 11 (2023), 3853. https://doi.org/10.3390/math11183853 doi: 10.3390/math11183853 |
[18] | C. Chevalley, S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, T. Am. Math. Soc., 63 (1948), 85–124. https://doi.org/10.2307/1990637 doi: 10.2307/1990637 |
[19] | R. Tang, Y. Frégier, Y. Sheng, Cohomologies of a Lie algebra with a derivation and applications, J. Algebra, 534 (2019), 65–99. https://doi.org/10.1016/j.jalgebra.2019.06.007 doi: 10.1016/j.jalgebra.2019.06.007 |
[20] | Q. Sun, S. Chen, Representations and cohomologies of differential 3-Lie algebras with any weight, arXiv Preprint, 2022. https://doi.org/10.48550/arXiv.2204.03171 |
[21] | Y. Li, D. Wang, Lie algebras with differential operators of any weights, Electron. Res. Arch., 31 (2022), 1195–1211. https://doi.org/10.3934/era.2023061 doi: 10.3934/era.2023061 |