This paper dealt with the existence of multiple solutions for some singular $ p(s) $-Laplacian problems involving the $ \varphi $-Hilfer derivative. Precisely, we combined the variational method with the Nehari manifold to prove that such a problem admited two nontrivial solutions. An example was presented to illustrate the effectiveness of our main result.
Citation: Wafa M. Shammakh, Raghad D. Alqarni, Hadeel Z. Alzumi, Abdeljabbar Ghanmi. Multiplicityof solution for a singular problem involving the $ \varphi $-Hilfer derivative and variable exponents[J]. AIMS Mathematics, 2025, 10(3): 4524-4539. doi: 10.3934/math.2025209
This paper dealt with the existence of multiple solutions for some singular $ p(s) $-Laplacian problems involving the $ \varphi $-Hilfer derivative. Precisely, we combined the variational method with the Nehari manifold to prove that such a problem admited two nontrivial solutions. An example was presented to illustrate the effectiveness of our main result.
[1] |
R. Alsaedi, A. Ghanmi, Variational approach for the Kirchhoff problem involving the p-Laplace operator and the $\psi$-Hilfer derivative, Math. Meth. Appl. Sci., 46 (2023), 9286–9297. https://doi.org/10.1002/mma.9053 doi: 10.1002/mma.9053
![]() |
[2] |
S. Arora, T. Mathur, S. Agarwal, K. Tiwari, P. Gupta, Applications of fractional calculus in Computer Vision: A survey, Neurocomputing, 489 (2022), 407–428. https://doi.org/10.1016/j.neucom.2021.10.122 doi: 10.1016/j.neucom.2021.10.122
![]() |
[3] |
A. Bonfanti, J. L. Kaplan, G. Charras, A. Kabla, Fractional viscoelastic models for power-law materials, Soft Matter, 16 (2020), 6002–6020. https://doi.org/10.1039/D0SM00354A doi: 10.1039/D0SM00354A
![]() |
[4] |
N. T. Chung, A. Ghanmi, Multiplicity of solutions for a singular system involving the fractional $p$-$q$-Laplacian operator and sign-changing weight functions, Z. Anal. Anwend., 41 (2022), 167–187. https://doi.org/10.4171/zaa/1701 doi: 10.4171/zaa/1701
![]() |
[5] |
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
![]() |
[6] | L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Berlin: Springer, 2011. |
[7] |
D. Edmunds, J. Rákosník, Sobolev embeddings with variable exponent, Stud. Math., 143 (2000), 267–293. https://doi.org/10.4064/sm-143-3-267-293 doi: 10.4064/sm-143-3-267-293
![]() |
[8] |
A. Elhoussain, E. H. Hamza, J. V. D. C. Sousa, On a class of capillarity phenomenon with logarithmic nonlinearity involving $\theta(.)$-Laplacian operator, Comp. Appl. Math., 43 (2024), 344. https://doi.org/10.1007/s40314-024-02863-8 doi: 10.1007/s40314-024-02863-8
![]() |
[9] |
X. Fan, D. Zhao, On the spaces $L^{p(\kappa)}(\Omega)$ and $W^{m, p(\kappa)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617
![]() |
[10] |
X. Fan, Q. Zhang, D. Zhao, Eigenvalues of $p(\cdot)$-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2005), 306–317. https://doi.org/10.1016/j.jmaa.2003.11.020 doi: 10.1016/j.jmaa.2003.11.020
![]() |
[11] |
A. Ghanmi, S. Horrigue, Existence of positive solutions for a coupled system of nonlinear fractional differential equations, Ukr. Math. J., 71 (2019), 39–49. https://doi.org/10.1007/s11253-019-01623-w doi: 10.1007/s11253-019-01623-w
![]() |
[12] |
A. Ghanmi, Z. Zhang, Nehari manifold and multiplicity results for a class of fractional boundary value problems with $p$-Laplacian, Bull. Korean Math. Soc., 56 (2019), 1297–1314. https://doi.org/10.4134/BKMS.b181172 doi: 10.4134/BKMS.b181172
![]() |
[13] |
A. Ghanmi, M. Kratou, K. Saoudi, A multiplicity results for a singular problem involving a Riemann-Liouville fractional derivative, Filomat, 32 (2018), 653–669. https://doi.org/10.2298/FIL1802653G doi: 10.2298/FIL1802653G
![]() |
[14] |
E. H. Hamza, A. Elhoussain, J. V. D. C. Sousa, On a class of Kirchhoff problems with nonlocal terms and logarithmic nonlinearity, J. Pseudo-Differ. Oper. Appl., 15 (2024), 52. https://doi.org/10.1007/s11868-024-00624-z doi: 10.1007/s11868-024-00624-z
![]() |
[15] | J. S. Jacob, J. H. Priya, A. Karthika, Applications of fractional calculus in science and engineering, J. Crit. Rev., 7 (2020), 4385–4394. |
[16] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006. |
[17] | A. Mathur, A. Akhtar, Fractional calculus in signal processing: The use of fractional calculus in signal processing applications, such as image denoising, filtering, and time series analysis, Int. J. Multidiscip. Res., 5 (2023). |
[18] |
A. Nouf, W. M. Shammakh, A. Ghanmi, Existence of solutions for a class of Boundary value problems involving Riemann Liouville derivative with respect to a function, Filomat, 37 (2023), 1261–1270. https://doi.org/10.2298/FIL2304261N doi: 10.2298/FIL2304261N
![]() |
[19] | O. Obaloluwa, Fractional calculus in modeling viscoelastic material, J. Math. Educ., 2024. |
[20] | O. Obaloluwa, Applications of fractional calculus in modeling anomalous diffusion, J. Math. Educ., 2024. |
[21] | I. Podlubny, Fractional differential equations an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Amsterdam: Elsevier Science, 1998. |
[22] |
D. D. Repovš, K Saoudi, The Nehari manifold approach for singular equations involving the $p(x)$-Laplace operator, Complex Var. Elliptic Equ., 68 (2021), 135–149. https://doi.org/10.1080/17476933.2021.1980878 doi: 10.1080/17476933.2021.1980878
![]() |
[23] |
J. V. Sousa, Nehari manifold and bifurcation for a $\Im$-Hilfer fractional $p$-Laplacian, Math. Meth. Appl. Sci., 44 (2021), 9616–9628. https://doi.org/10.1002/mma.7296 doi: 10.1002/mma.7296
![]() |
[24] | J. V. Sousa, E. C. Oliveira, On the $\Im$-HFD, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. |
[25] |
J. V. Sousa, K. D. Kucche, J. J. Nieto, Existence and multiplicity of solutions for fractional $\iota(\xi)$-Kirchhoff-Type equation, Qual. Theory Dyn. Syst., 23 (2024), 27. https://doi.org/10.1007/s12346-023-00877-x doi: 10.1007/s12346-023-00877-x
![]() |
[26] | J. V. Sousa, L. S. Tavares, C. E. Torres, A variational approach for a problem involving a $\Im$-Hilfer fractional operator, J. Appl. Anal. Comput., 11 (2020), 1610–1630. |
[27] | V. E. Tarasov, Fractional dynamics, Nonlinear Phys. Sci., 2010. |
[28] | J. A. Tenreiro Machado, M. F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, et al., Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010. https://doi.org/10.1155/2010/639801 |