In this work, we develop some variational settings related to some singular $ p $-Kirchhoff problems involving the $ \psi $-Hilfer fractional derivative. More precisely, we combine the variational method with the min-max method in order to prove the existence of nontrivial solutions for the given problem. Our main result generalizes previous ones in the literature.
Citation: Hadeel Zaki Mohammed Azumi, Wafa Mohammed Ahmed Shammakh, Abdeljabbar Ghanmi. Min-max method for some classes of Kirchhoff problems involving the $ \psi $-Hilfer fractional derivative[J]. AIMS Mathematics, 2023, 8(7): 16308-16319. doi: 10.3934/math.2023835
In this work, we develop some variational settings related to some singular $ p $-Kirchhoff problems involving the $ \psi $-Hilfer fractional derivative. More precisely, we combine the variational method with the min-max method in order to prove the existence of nontrivial solutions for the given problem. Our main result generalizes previous ones in the literature.
[1] | R. P. Agarwal, M. Benchohra, S. Hamani, Boundary value problems for fractional differential equations, Georgian Math. J., 16 (2009), 401–411. https://doi.org/10.1515/GMJ.2009.401 doi: 10.1515/GMJ.2009.401 |
[2] | K. B. Ali, A. Ghanmi, K. Kefi, Existence of solutions for fractional differential equations with Dirichlet boundary conditions, Electron. J. Differ. Eq., 2016 (2016), 116. |
[3] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006 |
[4] | R. Alsaedi, A. Ghanmi, Variational approach for the Kirchhoff problem involving the $p$-Laplace operator and the $\psi$-Hilfer derivative, Math. Method. Appl. Sci., 2023. https://doi.org/10.1002/mma.9053 doi: 10.1002/mma.9053 |
[5] | J. K. Brooks, Equicontinuous sets of measures and applications to Vitali's integral convergence theorem and control measures, Adv. Math., 10 (1973), 165–171. https://doi.org/10.1016/0001-8708(73)90104-7 doi: 10.1016/0001-8708(73)90104-7 |
[6] | W. Chen, G. Pang, A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction, J. Comput. Phys., 309 (2016), 350–367. https://doi.org/10.1016/j.jcp.2016.01.003 doi: 10.1016/j.jcp.2016.01.003 |
[7] | Y. Cho, I. Kim, D. Sheen, A fractional-order model for MINMOD millennium, Math. Biosci., 262 (2015), 36–45. https://doi.org/10.1016/j.mbs.2014.11.008 doi: 10.1016/j.mbs.2014.11.008 |
[8] | J. V. da C. Sousa, E. C. de Oliveira, On the $\psi$-fractional integral and applications, Comput. Appl. Math., 38 (2019), 4. https://doi.org/10.1007/s40314-019-0774-z doi: 10.1007/s40314-019-0774-z |
[9] | J. V. da C. Sousa, J. Zuo, D. O'Regand, The Nehari manifold for a $\psi$-Hilfer fractional p-Laplacian, Appl. Anal., 101 (2022), 5076–5106. https://doi.org/10.1080/00036811.2021.1880569 doi: 10.1080/00036811.2021.1880569 |
[10] | J. V. da C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005 |
[11] | J. V. da C. Sousa, L. S. Tavares, C. Torres, A variational approach for a problem involving a $\psi$-Hilfer fractional operator, J. Appl. Anal. Comput., 11 (2021), 1610–1630. https://doi.org/10.11948/20200343 doi: 10.11948/20200343 |
[12] | R. Ezati, N. Nyamoradi, Existence of solutions to a Kirchhoff $\psi$-Hilfer fractional $p$-Laplacian equations, Math. Method. Appl. Sci., 44 (2021), 12909–12920. https://doi.org/10.1002/mma.7593 doi: 10.1002/mma.7593 |
[13] | A. Ghanmi, M. Althobaiti, Existence results involving fractional Liouville derivative, Bol. Soc. Paran. Mat., 39 (2021), 93–102. https://doi.org/10.5269/bspm.42010 doi: 10.5269/bspm.42010 |
[14] | A. Ghanmi, M. Kratou, K. Saoudi, A multiplicity results for a singular problem involving a Riemann-Liouville fractional derivative, Filomat, 32 (2018), 653–669. https://doi.org/10.2298/FIL1802653G doi: 10.2298/FIL1802653G |
[15] | A. Ghanmi, S. Horrigue, Existence of positive solutions for a coupled system of nonlinear fractional differential equations, Ukr. Math. J., 71 (2019), 39–49. https://doi.org/10.1007/s11253-019-01623-w doi: 10.1007/s11253-019-01623-w |
[16] | A. Ghanmi, Z. Zhang, Nehari manifold and multiplicity results for a class of fractional boundary value problems with $p$-Laplacian, Bull. Korean Math. Soc., 56 (2019), 1297–1314. https://doi.org/10.4134/BKMS.b181172 doi: 10.4134/BKMS.b181172 |
[17] | N. M. Grahovac, M. M. $\grave{{\rm{Z}}}$igi$\grave{{\rm{c}}}$, Modelling of the hamstring muscle group by use of fractional derivatives, Comput. Math. Appl., 59 (2010), 1695–1700. https://doi.org/10.1016/j.camwa.2009.08.011 doi: 10.1016/j.camwa.2009.08.011 |
[18] | R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Company, 2000. |
[19] | F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcat. Chaos, 22 (2012), 1250086. https://doi.org/10.1142/S0218127412500861 doi: 10.1142/S0218127412500861 |
[20] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, elsevier, 2006. |
[21] | G. Kirchhoff, Vorlesungen über mechanik, Teubner, 1897. |
[22] | R. L. Magin, M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus, J. Vib. Control, 14 (2008), 1431–1442. https://doi.org/10.1177/1077546307087439 doi: 10.1177/1077546307087439 |
[23] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[24] | Y. A. Rossikhin, M. Shitikova, Analysis of two colliding fractionally damped spherical shells in modeling blunt human head impacts, Open Phys., 11 (2013), 760–778. https://doi.org/10.2478/s11534-013-0194-4 doi: 10.2478/s11534-013-0194-4 |
[25] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and functions, Switzerland: Gordon and breach science publishers, 1993. |
[26] | S. Saravanakumar, P. Balasubramaniam, Non-instantaneous impulsive Hilfer fractional stochastic differential equations driven by fractional Brownian motion, Stoch. Anal. Appl., 39 (2021), 549–566. https://doi.org/10.1080/07362994.2020.1815545 doi: 10.1080/07362994.2020.1815545 |
[27] | C. Torres, Mountain pass solution for a fractional boundary value problem, J. Fract. Calc. Appl., 5 (2014), 1–10. |
[28] | C. Torres Ledesma, Boundary value problem with fractional $p$-Laplacian operator, Adv. Nonlinear Anal., 5 (2016), 133–146. https://doi.org/10.1515/anona-2015-0076 doi: 10.1515/anona-2015-0076 |
[29] | C. Torres Ledesma, Existence and concentration of solutions for a nonlinear fractional Schödinger equation with steep potential well, Commun. Pure Appl. Anal., 15 (2016), 535–547. https://doi.org/10.3934/cpaa.2016.15.535 doi: 10.3934/cpaa.2016.15.535 |
[30] | C. Torres Ledesma, Existence of solution for a general fractional advection-dispersion equation, Anal. Math. Phys., 9 (2019), 1303–1318. https://doi.org/10.1007/s13324-018-0234-8 doi: 10.1007/s13324-018-0234-8 |
[31] | N. H. Tuan, A. T. Nguyen, N. H. Can, Existence and continuity results for Kirchhoff parabolic equation with Caputo–Fabrizio operator, Chaos Soliton. Fract., 167 (2023), 113028. https://doi.org/10.1016/j.chaos.2022.113028 doi: 10.1016/j.chaos.2022.113028 |