Research article

A generalized time fractional Schrödinger equation with signed potential

  • Received: 16 October 2023 Revised: 19 January 2024 Accepted: 02 February 2024 Published: 27 March 2024
  • 26A33, 60H30, 34K37

  • In this work, by stochastic analyses, we study stochastic representation, well-posedness, and regularity of generalized time fractional Schrödinger equation

    $ \begin{equation*} \left\{\begin{aligned} \partial_t^wu(t,x)& = \mathcal{L} u(t,x)-\kappa(x)u(t,x),\; t\in(0,\infty),\; x\in \mathcal{X},\\ u(0,x)& = g(x),\; x\in \mathcal{X},\\ \end{aligned}\right. \end{equation*} $

    where the potential $ \kappa $ is signed, $ \mathcal{X} $ is a Lusin space, $ \partial_t^w $ is a generalized time fractional derivative, and $ \mathcal{L} $ is infinitesimal generator in terms of semigroup induced by a symmetric Markov process $ X $. Our results are applicable to some typical physical models.

    Citation: Rui Sun, Weihua Deng. A generalized time fractional Schrödinger equation with signed potential[J]. Communications in Analysis and Mechanics, 2024, 16(2): 262-277. doi: 10.3934/cam.2024012

    Related Papers:

  • In this work, by stochastic analyses, we study stochastic representation, well-posedness, and regularity of generalized time fractional Schrödinger equation

    $ \begin{equation*} \left\{\begin{aligned} \partial_t^wu(t,x)& = \mathcal{L} u(t,x)-\kappa(x)u(t,x),\; t\in(0,\infty),\; x\in \mathcal{X},\\ u(0,x)& = g(x),\; x\in \mathcal{X},\\ \end{aligned}\right. \end{equation*} $

    where the potential $ \kappa $ is signed, $ \mathcal{X} $ is a Lusin space, $ \partial_t^w $ is a generalized time fractional derivative, and $ \mathcal{L} $ is infinitesimal generator in terms of semigroup induced by a symmetric Markov process $ X $. Our results are applicable to some typical physical models.



    加载中


    [1] M. M. Meerschaert, H. P. Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab., 41 (2004), 623–638. https://doi.org/10.1239/jap/1091543414 doi: 10.1239/jap/1091543414
    [2] B. Baeumer, M. M. Meerchaert, Stochastic solutions for fractional Cauchy problems, Fract. Calc. Appl. Anal., 4 (2001), 481–500. Available from: https://stt.msu.edu/users/mcubed/FracCauchyJM.pdf
    [3] M. Allen, L. Caffarelli, A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603–630. https://doi.org/10.1007/s00205-016-0969-z doi: 10.1007/s00205-016-0969-z
    [4] B. Baeumer, T. Luks, M. M. Meerschaert, Space-time fractional Dirichlet problems, Math. Nachr., 291 (2018), 2516–2535. https://doi.org/10.1002/mana.201700111 doi: 10.1002/mana.201700111
    [5] M. Foondun, E. Nane, Asymptotic properties of some space-time fractional stochastic equations, Math. Z., 287 (2017) 493–519. https://doi.org/10.1007/s00209-016-1834-3
    [6] M. Grothaus, F. Jahnert, Mittag-Leffler analysis, II: application to the fractional heat equation, J. Funct. Anal., 270 (2016), 2732–2768. https://doi.org/10.1016/j.jfa.2016.01.018 doi: 10.1016/j.jfa.2016.01.018
    [7] Z. Q. Chen, K. H. Kim, P. Kim, Fractional time stochastic partial differential equations, Stochastic Process. Appl., 125 (2015), 1470–1499. https://doi.org/10.1016/j.spa.2014.11.005 doi: 10.1016/j.spa.2014.11.005
    [8] K. Li, J. Peng, J. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal., 263 (2012), 476–510. https://doi.org/10.1016/j.jfa.2012.04.011 doi: 10.1016/j.jfa.2012.04.011
    [9] J. Mijena, E. Nane, Space time fractional stochastic partial differential equations, Stochastic Process. Appl., 125 (2015), 3301–3326. https://doi.org/10.1016/j.spa.2015.04.008 doi: 10.1016/j.spa.2015.04.008
    [10] Z. C. Fang, J. Zhao, H. Li, Y. Liu, A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model. Numer. Algorithms, 93 (2023), 863–898. https://doi.org/10.1007/s11075-022-01444-2
    [11] M. Kovács, S. Larsson, F. Saedpanah, Mittag-Leffler Euler integrator for a stochastic fractional order equation with additive noise, SIAM J. Numer. Anal., 58 (2020), 66–85. https://doi.org/10.1137/18M1177895 doi: 10.1137/18M1177895
    [12] D. L. Wang, M. Stynes, Optimal long-time decay rate of numerical solutions for nonlinear time-fractional evolutionary equations, SIAM J. Numer. Anal., 61 (2023), 2011–2034. https://doi.org/10.1137/22M1494361 doi: 10.1137/22M1494361
    [13] B. Y. Zhou, X. L. Chen, D. F. Li, Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations, J. Sci. Comput., 85 (2020), 39. https://doi.org/10.1007/s10915-020-01350-6 doi: 10.1007/s10915-020-01350-6
    [14] M. M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics, vol. 43, Walter de Gruyter, Berlin/Boston, 2012. https://doi.org/10.1515/9783110560244
    [15] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993. Available from: https://www.gbv.de/dms/ilmenau/toc/122837029.PDF
    [16] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, New York and London, 1993. Available from: https://book.douban.com/subject/4185601/
    [17] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Volume I: Background and Theory, Springer & Higher Education Press, Berlin & Beijing, 2013. https://doi.org/10.1007/978-3-642-33911-0
    [18] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Volume II: Applications, Springer & Higher Education Press, Berlin & Beijing, 2013. https://doi.org/10.1007/978-3-642-33911-0
    [19] H. Y. Xu, Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials, Commun. Anal. Mech., 15 (2023), 132–161. https://doi.org/10.3934/cam.2023008 doi: 10.3934/cam.2023008
    [20] Z. Q. Chen, M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory, Princeton University Press, 2012. https://doi.org/10.1515/9781400840564
    [21] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, 2nd ed., De Gruyter, 2011. https://doi.org/10.1515/9783110218091
    [22] Z. Q. Chen, Time fractional equations and probabilistic representation, Chaos Solitons Fractals, 102 (2017), 168–174. https://doi.org/10.1016/j.chaos.2017.04.029 doi: 10.1016/j.chaos.2017.04.029
    [23] Z. Q. Chen, P. Kim, T. Kumagai, J. Wang, Heat kernel estimates for time fractional equations, Forum Math., 30 (2018), 1163–1192. https://doi.org/10.1515/forum-2017-0192 doi: 10.1515/forum-2017-0192
    [24] Z. Q. Chen, W. H. Deng, P. B. Xu, Feynman-Kac transform for anomalous processes, SIAM J. Math. Anal., 53 (2021), 6017–6047. https://doi.org/10.1137/21M1401528 doi: 10.1137/21M1401528
    [25] R. Sun, W. H. Deng, Unified stochastic representation, well-posedness analysis, and regularity analysis for the equations modeling anomalous diffusions, Discrete Contin. Dyn. Syst. Ser. B, 29 (2024), 991–1018. https://doi.org/10.3934/dcdsb.2023121 doi: 10.3934/dcdsb.2023121
    [26] K. I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999. Available from: http://assets.cambridge.org/97805215/53025/frontmatter/9780521553025_frontmatter.pdf
    [27] J. Bertoin, Lévy Processes, Cambridge University Press, 1996. Available from: https://cambridge.readlink.com/front-book.html?id = 590255
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(872) PDF downloads(111) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog