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Abstract: In this work, by stochastic analyses, we study stochastic representation, well-posedness,
and regularity of generalized time fractional Schrodinger equation

0u(t, x) = Lu(t, x) — k(x)u(t, x), t € (0,00), x € X,
u(0, x) = g(x), x € X,

where the potential « is signed, X is a Lusin space, 9" is a generalized time fractional derivative, and

L is infinitesimal generator in terms of semigroup induced by a symmetric Markov process X. Our
results are applicable to some typical physical models.
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1. Introduction

Anomalous diffusions are ubiquitous in the natural world, the probability distributions of which are
usually governed by equations with fractional operators. It is well known that the diffusion equation
ou(t, x) = Au(t, x) with u(0, x) = f(x) allows the stochastic solution u(t, x) = E*[f(B;)], where B, is
Brownian motion started at x € R¢ with infinitesimal generator A, describing the normal diffusion that
shows, e.g., heat propagation in homogeneous medium. Owing to particle sticking and/or trapping
phenomena, the following equation

Efu(t, x) = Au(t, x) with u(0, x) = f(x), (1.1)

has been used to simulate the anomalous diffusions displaying subdiffusive behavior widely such as
thermal diffusion in fractal media, protein diffusion within cells, and contaminant transport in
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groundwater. The Caputo derivative 8f , with fractional order 8 € (0, 1), can be defined by

1

o L PN
o0 = cr— i | €= 97 = FOs, (1.2)

T

where the Gamma function I'(1) := fooo t*te7'dt. In particular, Scheffer and Meerschaert [1, Theorem
5.1] recognized, based on [2], that the stochastic representation u(t,x) = E[f(Bg,)] satisfies the
equation (1.1), where E, is an inverse 3-stable subordinator that is independent of B,.

Solutions of the linear as well as nonlinear fractional partial differential equations have attracted a
lot of attention and have been extensively discussed; see, e.g., [3-9] and the references therein. There
are also some theoretical results and numerical methods for nonlinear time-fractional Schrodinger
equations [10-13]. It can be noted that most of the quoted papers are concentrated on the Caputo
derivative of fractional order. This attention has been gained by anomalous diffusion phenomena
emerging in diverse fields containing mathematics, physics, engineering, biology, chemistry,
hydrology, and geophysics, etc [14—18]. There are also some discussions on the semilinear parabolic
equations with singular potentials [19].

The present paper investigates the generalized time fractional Schrédinger equation

{a, u(t, x) = Lu(t, x) — k(x)u(t, x), t € (0,0), x € X, 13

u(0, x) = g(x), x € X,

where « is bounded in X with |||, < K, X is a Lusin space, being a topological space homeomorphic
to a Borel subset of a compact metric space. Denote X = {X,,t € [0,00);P*,x € X} as a time-
homogeneous strong Markov process on X whose sample paths are right continuous and have left
limits on X U {d}, where 0 is an isolated cemetery point outside X and X, = 0 for every ¢t > { := inf{t >
0 : X; = d}. The transition semigroup {P;};»o of X is defined as

P.f(x) =B [f(X)], xe€ X, t>0,

for any bounded or nonnegative function f on X that is extended to X U {9} by setting f(9) = 0. Here
P* denotes the probability law of X starting from position x, and E* is the mathematical expectation
taken under probability law P*. We assume in addition that the strong Markov process X on X is
v-symmetric, i.e., for any nonnegative functions f and g on X and ¢ > 0,

fx F(X)Pg(x)v(dx) = fx gX)P, f(x)v(dx),

where v is a o-finite measure on X with full support. The transition semigroup is strongly continuous
on L*(X;v) with ||P,]| < 1 for every t > 0; denote its infinitesimal generator by (£, D(L)). Then
L is a nonpositive definite self-adjoint operator in L?>(X;v) [20,21]. The notations || - || and (-, -) are,
respectively, the norm and inner product of L*(X;v). Besides, the generalized time fractional derivative
is defined by

d !
r10):= 5 [ W= 9 - FOas,

where the given function w : (0,00) — [0,00) is unbounded, non-increasing, and having
fo min{1, s}(—dw(s)) < oo. Such a function w is in one-to-one correspondence with an infinite Lévy
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measure ¢ on (0,00) so that w(x) = u(x,00). This Lévy measure g in turn is in one-to-one
correspondence with a driftless subordinator {S,},5o having

P(A) := fo (1 - e u(dx)

as its Laplace exponent; that is
E[e ™ = 7Y for A > 0. (1.4)

In particular, when w(s) = r(%_ﬁ)s‘ﬂ for g € (0,1), 8} f is just the Caputo derivative of order 5 in (1.2).
Through out this paper, {S,};>0 is a driftless subordinator with S = O that has a density p(, r) for every
t > 0 and ¢(A) is the Laplace exponent of the driftless subordinator {S,};»o having Lévy measure p.
Define E, = inf{s > 0 : S, > ¢} for t > 0, the inverse subordinator. The assumption that the Lévy
measure u is infinite, which is equivalent to w(x) = u(x, o) being unbounded, shows that r — §, is
strictly increasing and hence ¢ — E, is continuous.

When « = 0 in equation (1.3), Chen [22, Theorem 2.1] shows that the existence and uniqueness of

stochastic strong solution take a form:

u(t, x) = E[Pg,g(x)] = E'[g(Xg)],

where the infinitesimal generator £ generates a uniformly bounded and strongly continuous semigroup
in continuous function space C.(X) or L? space. The result in [22] for strong solution was extended
to that of weak solutions in [23] when the infinitesimal generator L is a symmetric operator in Hilbert
L? space. The main characteristic of the method in [22, 23] is a detailed analysis of the subordinator
associated with the function w together with a stochastic representation of the solution. Recently, the
authors [24, Page 6022] and [25, Remark 3.3] point out that the stochastic representation of equation
(1.3) takes a different form. When « > 0, it follows directly from [22, Theorem 2.1] that the unique
solution to (1.3) is given by

u(t, x) = B* [e— b < g(XEt)] ) (1.5)
The reason is that L = L — «(x) with D(L) = D(L) is the infinitesimal generator in terms of strongly
continuous contraction semigroup {P}},>o induced by the subprocess X* of X killed at rate «(x), that is,

Pif(x) := B [f(X)] = E [e- Jy xxoyds f(X,)] ,x€ X, t>0.

The stochastic representation (1.5) seems to be the solution to equation (1.3) in the case that the
potential « is signed. However, this conclusion has not been proved. To overcome this difficulty, we
first study the existence and uniqueness of the weak solution for (1.3) by utilizing the contraction
mapping principle. Then we establish regularity of this solution to obtain the strong solution of (1.3).
To the best of our knowledge, the regularity investigation of equation (1.3) is largely missing in the
literature, apart from the case x > 0 [25]. We will try to make some contributions to this research
field. The current research can be viewed as a sequel to [22,23,25].

2. Preliminaries and main results

For a real-valued function f defined on [0, c0), we use fto denote its Laplace transform,

FQ) := LUFNA) = f ) e f()dt, 1> 0,
0
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whenever the integral is absolutely convergent. Recall from [22] that w(1) = @ for A > 0.

Let G3(s) := fow p(r, s)dr be the potential density of the subordinator S. Since S is transient
(see [26, Theorem 35.4]),

!
f G5 (s)ds < oo for every t > 0, 2.1
0

i.e., (r, 8) & p(r, s) is an integrable function on [0, 00)X [0, ¢] for every ¢ > 0. In fact, by [27, Proposition
III.1], there exist constants C;, C, > 0 such that

Cl ! S C2
S0 < I) G’ (s)ds < S/D fort > 0. 2.2)

We will need the following estimates from Chen [22].
Lemma 2.1. /22, Lemma 2.1 and Corollary 2.1] It holds that:
(i) Define G(0) = 0 and G(t) = fot w(x)dx for all t > 0. We have that for every t,r > 0, 0 <
fot w(t = $P(S, > s)ds = G(t) — E[G(t = S ) ss,4]-
(ii) P(S, > 1) = for E[w(t — S)1yss,1ds for every r > 0 and t € (0,00) \ N, where the Borel set
N C (0, 00) has zero Lebesgue measure.
(iii) [ BIw(t = S )lzs,)ds = 1 for t € (0,00) \ N.
Theorem 2.2. Set X = {u € C([0, 00); L*(X;v)); sup,s e lu(z, )l < oo} with  norm

llully = sup,s, e Mu(t, ). Let g € L*(X;v). Then equation (1.3) has a unique weak solution u € X
with stochastic representation (1.5) in the sense that for every t € (0, 00) and ¢ € D(L),

<f w(t = s)(u(s, -)—g(-))ds,90>=f<u(s, -),£s0>ds—f<l<(-)u(s, ), p)ds. (2.3)
0 0

0
Moreover;

u € C(0,00); D(=L)Y)) for a € (0, 1), (2.4)

and .
f [(=L)%u(t,-)||dt < oo for every T > 0.
0

Proof of Theorem 2.2. (Existence) We prove that equation (1.3) has a weak solution u € X using the
contraction mapping principle. For u € X, we define

T(W)(t.x) : = E[P5,g(x)] - f f P, (k(yu(s, WOp(r. 1 — s)drds
s=0 Jr=0
= (1 x) — us(t, x).

First, it is needed to show that T'(«) € X. Clearly, for g € L*(X; V), sup, llui (2, )l < llgll. Since t = E;
is continuous a.s. and {P,} is a strongly continuous contraction semigroup in L*(X;v), we have by
the bounded convergence theorem that ¢ — u;(t, ) is continuous in L*(X;v). For u,(t,-), we have for
every given t > 0,

(2, I Sf_o f_OIIPr(K(-)u(S, Dp(r, t = s)drds

! 00 !
<K sup |lu(s, -)||f f p(r,t — s)drds < Cf G5 (s)ds.
s=0 Jr=0 0

s€[0,7]
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Thus, u(t,-) is well defined as an element in L*(X;v). We now show the continuity of # — u,(t,-) in
L*(X;v). Fort > 0, At > 0,

||M2(t + At, ) - u2(ta )”

1+ At 00
Sf f 1P (k(-uls, NIp(r, t + At — s)drds
s=t r=0
+ f foo 1P (k(u(s, Dlp(r,t + At — 5) — p(r,t — s)ldrds
s=0 Jr=0

1+ At 00
<K sup |lu(s, -)||f f p(r,t + At — s)drds
s=t r=0

SE[t,t+At]

! 00
+ K sup ||u(s, )| f f |p(r,t + At — s) — p(r,t — s)|drds
5s=0 Jr=0

s€[0,¢]

At t 00
f G5 (s)ds + f f |p(r, At + 5) — p(r, s)|drds|.
0 s=0 Jr=0

Using (2.2) and the fact lim,_,,, ¢(r) = oo in the first term, L'-continuity of the integrable function
(r,8) — p(r,s) on [0,00) X [0,¢ + 1] in the second term, one can see that as At — 0 both terms go to
zero.

Now we show that u, belongs to X. By (1.4), we have

<C

! 00
llusllx < sup e‘k’f f P (k(uls, NIp(r,t = s)drds
s=0 Jr=0

>0

! 00
< Ksupe™ f f lu(s, | p(r, t — s)drds
s=0 Jr=0

>0

A 00
< Kllully sup e f f o pr,t — s)drds
s=0 Jr=0

>0

(o) (o) 7(
< Kl|u f f e p(r, s)drds = ——||ul|x.
loel|x - p(r,s) ¢(k)” Ilx

Next, one can see that T is a contraction mapping. Indeed, for v{, v, € X,

ITvi = Tvsllx <sup e_k'f f 1P (k(Ivi(s, ) = Pr(k()va(s, DIp(r, t — s)drds
5s=0 Jr=0

>0

! 00
<sup e_k”Kf f Ivi(Cs, ) = va(s, llp(r, t = s)drds
s=0 Jr=0

>0

! 00
<K|lv; = vallx supe™ f f & p(r,t — s)drds
s=0 Jr=0

>0

<Kllvi = vallx j::o I:oe “p(r, s)drds = %”\’1 - llx,

which implies that ||Tv; — Tw,|lx < |[vi — v,||x for large enough k. Hence, there exists a unique fixed
point # € X such that

u(t, x) = E[Pg,g(x)] - f f P.(k()u(s, ))(x)p(r,t — s)drds. (2.5)
s=0 Jr=0
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Now we show that u appearing in (2.5) satisfies the equation (2.3). Denote u = u; — u,. For u;, we
have for every r > 0 and ¢ € D(L),

< fo Wit = )i (s,) - g)ds, ¢>

= fow(t - 5) f_o«Prg’ ©) =& eNd,P(S, = s)ds

= f m(<Prg, @) — (g p)d; ( f w(t — $)P(S, > s)ds (2.6)
r=0 s=0
= - fo (g, Pro) — (g, ), E[G(t — S ) =53]

= f E[G(I - Sr)l{terIKPrga £90>dr

0

The first equality follows from P(E, < r) = P(S, > ¢); the second is justified by the Riemann sum

approximation of Stieltjes integrals; the third follows from self-adjointness of {P,},»o and Lemma 2.1
(1); and the last follows the integration by parts. On the other hand, we find that for every r > 0 and

v € DL, t t
f (ui(s,-), Loyds = f < f P.gd,P(E, < r),£90>ds
0 0 0

:f f <Prg’ £¢>E[W(S - Sr)l{szS,}]drds (27)
s=0 Jr=0

= f (P8, LOE[G( = § )5, 1dr,
0

the second equality of which follows from Lemma 2.1 (i1); the third one is an application of Tonelli’s
Theorem and a simple change of variables. Thus, by (2.6) and (2.7) we conclude that for every ¢t > 0
and ¢ € D(L),

< f Wit = $)(u (s, -)—g)ds,90>= f (uy(5, ), LoYds. 2.8)
0 0

Next, we consider u,, we have for every ¢ > 0,

f w(t — $)uy(s, x)ds = f w(t — s) (fs f‘x’ P.(k()u(t, ) (x)p(r, s — T)drdT) ds
0 s=0 =0 Jr=0
= f fm P.(k(Hu(t,-))(x) (f w(t — s)p(r, s — T)ds) drdt
=0 Jr=0 S=T
= f f‘” P.(«(Hu(t, ))(x) (f - w(t —1 — s)p(r, s)ds) drdt
=0 Jr=0 s=0

= f foo Pr(K(')u(T’ '))(-x)drP(Et—T < I’)dT
7=0 Jr=0

_ fo B[Py, (k(-)u(s, ))(0))ds,

the first equality of which follows the definition of u,; the second and the third ones are application of
Tonelli’s Theorem and a simple change of variables; the fourth one is due to Lemma 2.1 (i). Thus, for
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every ¢ € D(L) and ¢ > 0, by the self-adjointness of {P,},~, and Fubini theorem, we have

<f w(t — $)uy(s, -)ds, (p> = <f EPg, (k(u(s,-))ds, go>
0 0
=f<K(')M(S, ), EPE,_@)ds
0
! t E; -
:f</<(-)u(s, -),(p)ds+f</<(~)u(7, -),Ef Ps.ﬁgads>dr
0 0 0

d 4 I
= f (k(Hu(s, ), p)ds + f <E f P (k(u(t, -))ds, £(,D> dr.
0 0 0

Then, by a direct computation, we have
! E;—+
f (Ef P (k(-)u(r, -))ds) dr
0 0
:f f P(E,_; > )P (k()u(r, -))ds) dr
0o \Jo
= f foo P(S,; <t—1)Py(k()u(r, '))ds) dr
0o \Jo
f f‘x’ (f - p(s, r)dr) P (k()u(r, -))ds) dr
0 \Js=0 \Jr=0
= f f Py(k()u(t,)p(s,t — T — r)dsdrdr
=0 Jr=0 s=0
= f f f Py(k(Hu(t,))p(s,t —r — T)dsdrdr
r=0 J1=0 s=0
= f uy(t —r,-)dr = f uy(s,-)ds.
0 0

Thus by (2.9) and (2.10) one can conclude that for every ¢ > 0 and ¢ € D(L),

<f w(t — $)uy(s, -)ds,g0> = f(K(-)u(s, -),go)ds+f<u2(s, ), Lo)ds.
0 0 0

Hence by (2.8) and (2.11), u appearing in (2.5) satisfies the equation (2.3).

(2.9)

(2.10)

(2.11)

(Uniqueness) For the uniqueness of weak solution of equation (1.3), it is enough to show that u
solves (2.3) if and only if u satisfies (2.5). The ‘if” direction has been proved by the above discussion.
For the ‘only if” direction, let u € X satisfy (2.3). Combining (2.3), (2.8), and (2.11), we have for every

t>0and ¢ € D(L),

0

<f w(t = $)u(s, ) —ui (s, ) + uz(s, ))ds, 90> = f(u(s, ) =i (s, ) + ua(s, ), Loyds.
0

Let h(t, x) := u(t, x) — ui (¢, x) + ua(t, x). We have [|h(z, )l < C X for large enough k. Therefore for every
A >k, h(a,-) € L*(X;v). Taking Laplace transform w.r.t. ¢ on both sides yields that for every 1 > k and

v € DL,

) 1
TG ). @) = (). L.
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That is, for every A > k and ¢ € D(L),

fX T DG — Lp(0v(d) = 0.

Since L is the infinitesimal generator of strongly continuous contraction semigroup {P,},~o on Banach
space L*(X; v), the resolvent G4, = fow e "' P dt is well defined and is the inverse to ¢(1)— L. Taking
¢ = Gy yields that,

f (A, X)W (x)v(dx) = 0 for every A > ki € LX(X; V).
X

Thus, we have /ﬂ(/l, -) = 0 for every A > k. By the uniqueness of Laplace transform, we have A(z,-) = 0
fora.e. r > 0. Since 7 — h(t, -) is continuous for ¢ > 0, we conclude that A(z,-) = O for ¢ > 0, and hence
u = u; — u, satisfies (2.5).

Remark 2.3. Similar to the above discussions, when the nonlinear function f satisfies Lipschitz
condition, i.e., there exists a positive constant % such that for # > 0 and ¢, ¢, € L*(X;v),

/(- d0) = [, @Il < Kligs = ¢all,
then the nonlinear time fractional equation

0Yu(t,x) = Lu(t,x) + f(t, x,u(t, x)), t € (0,0), x € X,
u(0,x) = g(x), x € X,

has an unique weak solution in the sense that for every ¢ € (0, c0) and ¢ € D(L),

<f w(t = s)(u(s, -)—g(-))dsasﬁ>=f<u(s, -),£s0>ds+f<f(s,  u(s, ), @yds.
0 0

0

Proof of Theorem 2.2-continued. (Stochastic representation) Denote
v(t,x) = B [e— b K(Xs>dsg(xt)] :

Then we have
Ey
Ex I:e—J(‘) K(Xx)dsg(XE[)

= Ev(E,, x).

It remains to establish for ¢ > 0, the stochastic representation defined by (1.5) satisfies (2.5), i.e.,
E; ) ! 00
E*|ek ““‘”‘“g(XE,)] = E'[g(Xg,)] - f f Py(k()BV(E,, )(X)p(r, 1 — s)drds. (2.12)
s=0 Jr=0

On the one hand, denote by % the o-field generated by the subordinator S. By the independence
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between X and S (and hence its inverse E) and the Markov property of X,

Bg(Xp)] — B [e 65 g0x, )|
= 5o F00n 1) gox|

B .
= ]E[]Ex f K(X,)e_fr “Xds o (X )dr ]
| Jo

- E, .
-E [Ex f K(XV)EXr [e_f’ K(er)dsg(XEt_r)] d}"]
| JO

g

(2.13)

g

-,
=E [E" f KX )V(E, —r, X,)dr]
[Jo

|
E;
=E [f P, (k(W(E;,—1,°)) (x)dr] .
0

By Lemma 2.1 (ii), taking Laplace transform w.r.t. ¢ yields that for 1 > &,

E;
< {E [f Pr (K(-)V(Et -7, )) (x)d}"]} (/l)
0
=% {foo fT P. (k()v(t —r,+)) (x)drd P(E; < T)} 1)
=0 Jr=0

=Y {f‘” fT P, (k(-)W(T — r,-)) (x)drE[w(t — 57)1{1257}]d7'} (1) (2.14)
=0 Jr=0
= ‘p(/l) foo f-r Pr (K(‘)V(T -, )) (X)dre_"”u)dr
Z =0 Jr=0

) f ) f ) e TPDP (k()v(z, ) (x)drdr.
A =0 Jr=0

On the other hand, taking Laplace transform w.r.t. ¢ yields that for A4 > &,

A {f foo P,.(«(-)Ev(E,, )(x)p(r, t — s)drds} @)
s=0 Jr=0

=0 s=0 r=0 S 1 P) E T
=0 r=0 s=0 N ;; I

_ ¢ f B f " T IOP () (Odrdr.
/l =0 Jr=0

Combining (2.13), (2.14), and (2.15), Eq. (2.12) can be proved by the uniqueness of Laplace transform.
(Regularity) One has the estimate ||(-£)*P;|| < C,t™® for t > 0 by utilizing spectral representation

(2.15)
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of the self-adjoint operator £. By Lemma 2.1 (ii), for ¢ > 0,
f I(=L)*Pglld,P(E, <r)
1
<C.ligll —d PE < 1) = GlI8IIE | = B (2.16)

:Ca”g”f (ﬁE[W(t_Sr)l{tzS,}])dr-
0

For given ¢ > 0, by (2.1),

[ [y [ B8,
_f P(S t) f P(S t)
f—dr+f P(S, < t)dr

f G (s)ds < 0.
l—oz

Then, for a.e. t > 0, fooo #dr < oo. By Lemma 2.1 (iii), for a.e. t > 0,

(2.17)

<

00 1 00
f —E[w(t = S )5 ,1dr < f Elw(t = S )ys,1dr = 1.
1 e 0

For each ¢ > 0, using Lemma 2.1 (i) and the Fubini theorem,

f f _E[W(S_ Mysss41drds
:f —E [f W(S_Sr)l{szsr}ds] dr
o 0

1
1
:f —QE[G(Z_Sr)l{IZSr}]dr
0o T
'
SG(z)f —dr < oo.
o ¢

Thus, for a.e. t > 0, fooo %E[w(t — S )ss,4]dr < oo. It follows that u,(¢,-) € D((—=L)*) for a.e. t > 0.
By the monotonicity of ¢ - E[%], ui(t,-) € D(=L)*) for t > 0. Moreover, we have for each ¢t > 0,

(=L (1, x) = f (—L)*P,g(x)d,P(E; < 1)
0

and

T
f [[(=L)%u;(t, -)||dt < oo for every T > 0. (2.18)
0
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In addition, by Lemma 2.1 (ii) and the Fubini theorem, for # > 0,

“P(E, <) <1 "
fo ——dr = fo = f (BDH( = S ) es, Disdr

00 00 1
= ISZO(E[W(I - Ss)l{tzss}]) I:S mdm’s

<1
) f E(E[W(I =S )izs4Dds < co.
0

o [TEEE,,
=0 0 ra/+l

<
lim ?Kfﬁ_:_fz =0

r—0* r(l

Thus we have for ¢ > 0,

0 <
f LipE <= BESD
o I re

It follows that for ¢ > 0,
(2.19)

We now show the continuity of ¢ — (=£)%u; (¢, -) in L>(X;v). By (2.19) and the integration by parts,
fort > 0, At > 0,

(=L)"ui(t + At, x) = (=L)"ui (2, x) = f (L) P,g(x)d,[P(Eprar < 1) —P(E; < 1)]
0
= f [P(E; < r) = P(Epoar < D=L Pg(x)dr.
0
Hence, by Levi monotone convergence theorem, as At — 0,
I(=L)ui(t + A1, ) = (=L)"ua (2, )] < f [P(E; < 1) = P(Esar < D=L Pglldr
o . (2.20)
< Ca+1||g||f P(E < 7) = B(Eear < Nl 7dr = 0.
0
We next consider u,, for given t > 0, by (2.17),

f f I(=L)* P («()uls, Dlp(r,t — s)drds

<C,K sup ||u(s, )||f f —p(r t— s)drds

s€[0,7]

SC( ! +fGS(s)ds)<0<>.
1 - 0

It follows that u,(z,-) € D((-L)*) for t > 0. Moreover, we have for each 1 > 0,

(=) un(t, x) = f f (=L)*Pr(k(uls, )(x)p(r,t — s)drds
s=0 Jr=0

and ,
f [[(=L) uy(t, )||dt < oo for every T > 0. (2.21)
0
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We now show the continuity of 7 = (=£)%u(t,-) in L*(X;v). For t > 0, At > 0,
(=L ua(t + At, ) — (= L) ux(z, )l
1+At 00
Sf f I(=L)* Pr(k()uls, Nlp(r,t + At — s)drds

f ||( L) P (k(uls, MNp(r,t + At = 5) = p(r,t = s)ldrds

t+At (222)
<C,K sup |lu(s, )||f f —p(r t+ At — s)drds

s€(t,t+At]

+ C,K sup |lu(s, )|l f f —|p(r,t + At — s5) — p(r,t — s)|drds
s=0 Jr=0 re

s€[0,1]

<1 e
f —P(S, < Andr + f f —|p(r, At + s) — p(r, s)ldrds|.
o 5=0 Jr=0 T

Using Levi monotone convergence theorem in the first term, L'-continuity of the integrable function
(r,s) = p(r,s)/r* on [0,00) X [0, ¢ + 1] in the second term, one can see that as A — 0 both terms go
to zero.

<C

When « and g have some regularity, we show that u appearing in Theorem 2.2 is a unique strong
solution of equation (1.3).

Theorem 2.4. Suppose that g € D(—L)°) with € > 0 small enough, and («(-)u(t,-)) € D((—L)°) for
t > 0 with |[(-L)kCu(t, )| < Cll(=L)u(t,-)|| for some constant C,. Then u is the unique strong
solution of equation (1.3) satisfying u(t,-) € D(L) for a.e. t > 0 and fOT | Lu(t,-)||dt < oo for T > 0 in
the sense that for every t > 0,

f w(t — s)(u(s, ) — g(-))ds = f Lu(s,)ds — f k(u(s, )ds in L*(X; v). (2.23)
0 0 0
Moreover,

u € C([0, 00); D((=L))) N C((0, 00); D(L)). (2.24)

Proof. By ¢ € D(-£)°) and the similar calculations as the proof of (2.4), we have
u € C([0, 00); D((—L)%)). It remains to establish for a.e. r > 0, u(z,-) € D(L) and fOT | Lu(t, )||dt < oo
for T > 0, and hence (2.3) can be strengthened to (2.23) by the fact that D(L) is dense in L>(X; ).

In fact, by the same arguments as those in (2.16), we have for ¢ > 0,

f I.LP,glld,P(E, < r)
0
= f I(=L)'"P.(=L) glld,P(E, < r)

<Ci-l(- L)Egllf S P(E, < 1)

1
=C,_dI(=L)glE [ El_el < oo
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Hence u;(t,-) € D(L) and for ¢ > 0,
Lu(tn) = = [ LI P-LY g EE < 1)
0
Letu(t, x) = E[Pg,(-£)g(x)], by (2.18),

T T
f L (2, ) dr = f (=£)"G(z, ldt < oo for every T > 0. (2.25)
0 0
For u,, by (2.17) and ||[(-=L)(k(u(t, )|l < Cll(=L)u(t, -)||, we have for given t > 0,

f o f P ACuts, Do, £ = )drds
:f f I(=L) P (= L) (k(Huls, Np(r, t — s)drds
s=0 Jr=0

! 00 1
<Ci-C; sup [[(=L)us, -)Ilf f Ep(nt— s)drds
s=0 Jr=0

s€[0,1]

<Ci-¢Cy sup [[(=L)us, -)II(% +f GS(S)dS) < oo,
0

sel0.1]
It follow that u,(t,-) € D(L) for ¢t > 0, and

Lur(t,x) = - f f (=L)' P (=L (kCYuls, N(x)p(r, 1 — s)drds.
s=0 Jr=0
Let(t,x) = [, [ PA(=L) (k(u(s, N(x)p(r,t = s)drds, by (2.21),
T T
f (| Luy(t, H||dt = f I(=£) " (t, -)||dt < oo for every T > 0. (2.26)
0 0

Therefore fOT [ Lu(t,-)||dt < oo for every T > 0 following from (2.25) and (2.26).
The continuity of # — Lu(t,-) in L*>(X;v) is as follows. By the same arguments as those in (2.20),
for any t > 0, as At — 0,

1 Luy (2 + At ) = Luy (2, )l = f [P(E, < r) = P(Ersar < DIN=LY P (=L)glldr
0

0 1
<Cr_i(-L)gll f [PE; < 1) = P(Epoar < Il =dr = 0.
0
By the same arguments as those in (2.22), for t > 0, as At — 0,

||,£l/t2(t + Ata ) - ‘LuZ(ta )”
t+At 00
< f f I(=L)' =P (= L) (k(Iuls, Nllp(r,t + At — 5)drds
s=t r=0

+ f_o f_o ||(_-£)1—6Pr(—.£)6(’<(')u(s, MDp(r, t + At — s) — p(r, t — s)|drds

1
<Ci_Cy sup |[(=L)u(s, )l ——P(S, < Andr
s€[0,+1] o €

! 00 1
+ C1-Cy sup [|[(=L)us, -)Ilf f ——Ip(r, At + 5) — p(r, $)ldrds — 0.
s=0Jr=0 T €

s€[0,1]
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Then the proof of (2.24) is completed.

Remark 2.5. As for the rationality of the assumptions in Theorem 2.4, one can note that [[(—A)(kp)|| <
Cl(=A)4¢|| for the potential function x € CZ(R?) and every ¢ € D((-A)€) = H*(R?), in which C, is
a constant, and we take the Lusin space X = RY, L*(X;v) = L>(RY), (£, D(L)) = (A, H*(R?)), and the
symmetric Markov process as Brownian motion B;.
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