Research article Special Issues

Multiplicity of the large periodic solutions to a super-linear wave equation with general variable coefficient

  • Received: 06 November 2023 Revised: 24 January 2024 Accepted: 01 February 2024 Published: 01 April 2024
  • 35B10, 35L71

  • In this paper, we were concerned with the multiplicity of the large periodic solutions to a super-linear wave equation with a general variable coefficient. In general, the variable coefficient $ \rho(\cdot) $ needs to be satisfied $ \text{ess inf}\, \eta_\rho(\cdot) > 0 $ with $ \eta_\rho(\cdot) = \frac{1}{2}\frac{\rho''}{\rho}-\frac{1}{4}\big(\frac{\rho'}{\rho}\big)^2 $. Especially, the case $ \eta_\rho(\cdot) = 0 $ is presented as an open problem in [Trans. Amer. Math. 349: 2015-2048, 1997]. Here, without any restrictions on $ \eta_{\rho}(\cdot) $, we established the multiplicity of large periodic solutions for the Dirichlet-Neumann boundary condition and Dirichlet-Robin boundary condition when the period $ T = 2\pi\frac{2a-1}{b} $ with $ a, b \in \mathbb{N}^+ $. The key ingredient of the proof is the combination of the variational method and an approximation argument. Since the sign of $ \eta_\rho(\cdot) $ can change, our results can be applied to the classical wave equation.

    Citation: Xiao Han, Hui Wei. Multiplicity of the large periodic solutions to a super-linear wave equation with general variable coefficient[J]. Communications in Analysis and Mechanics, 2024, 16(2): 278-292. doi: 10.3934/cam.2024013

    Related Papers:

  • In this paper, we were concerned with the multiplicity of the large periodic solutions to a super-linear wave equation with a general variable coefficient. In general, the variable coefficient $ \rho(\cdot) $ needs to be satisfied $ \text{ess inf}\, \eta_\rho(\cdot) > 0 $ with $ \eta_\rho(\cdot) = \frac{1}{2}\frac{\rho''}{\rho}-\frac{1}{4}\big(\frac{\rho'}{\rho}\big)^2 $. Especially, the case $ \eta_\rho(\cdot) = 0 $ is presented as an open problem in [Trans. Amer. Math. 349: 2015-2048, 1997]. Here, without any restrictions on $ \eta_{\rho}(\cdot) $, we established the multiplicity of large periodic solutions for the Dirichlet-Neumann boundary condition and Dirichlet-Robin boundary condition when the period $ T = 2\pi\frac{2a-1}{b} $ with $ a, b \in \mathbb{N}^+ $. The key ingredient of the proof is the combination of the variational method and an approximation argument. Since the sign of $ \eta_\rho(\cdot) $ can change, our results can be applied to the classical wave equation.



    加载中


    [1] V. Barbu, N. H. Pavel, Periodic solutions to one-dimensional wave equation with piece-wise constant coefficients, J. Differential Equations, 132 (1996), 319–337. https://doi.org/10.1006/jdeq.1996.0182 doi: 10.1006/jdeq.1996.0182
    [2] V. Barbu, N. H. Pavel, Periodic solutions to nonlinear one dimensional wave equation with $x$-dependent coefficients, Trans. Amer. Math. Soc., 349 (1997), 2035–2048. https://doi.org/10.1090/S0002-9947-97-01714-5 doi: 10.1090/S0002-9947-97-01714-5
    [3] V. Barbu, N. H. Pavel, Determining the acoustic impedance in the 1-D wave equation via an optimal control problem, SIAM J. Control Optim., 35 (1997), 1544–1556. https://doi.org/10.1137/S0363012995283698 doi: 10.1137/S0363012995283698
    [4] J. Casado-Díaz, J. Couce-Calvo, F. Maestre, J. D. Martín Gómez, Homogenization and correctors for the wave equation with periodic coefficients, Math. Models Methods Appl. Sci., 24 (2014), 1343–1388. https://doi.org/10.1142/S0218202514500031 doi: 10.1142/S0218202514500031
    [5] S. Ji, Time periodic solutions to a nonlinear wave equation with $x$-dependent coefficients, Calc. Var. Partial Differential Equations, 32 (2008), 137–153. https://doi.org/10.1007/s00526-007-0132-7 doi: 10.1007/s00526-007-0132-7
    [6] S. Ji, Time-periodic solutions to a nonlinear wave equation with periodic or anti-periodic boundary conditions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 895–913. https://doi.org/10.1098/rspa.2008.0272 doi: 10.1098/rspa.2008.0272
    [7] S. Ji, Y. Gao, W. Zhu, Existence and multiplicity of periodic solutions for Dirichlet-Neumann boundary value problem of a variable coefficient wave equation, Adv. Nonlinear Stud., 16 (2016), 765–773. https://doi.org/10.1515/ans-2015-5058 doi: 10.1515/ans-2015-5058
    [8] S. Ji, Y. Li, Periodic solutions to one-dimensional wave equation with $x$-dependent coefficients, J. Differential Equations, 229 (2006), 466–493. https://doi.org/10.1016/j.jde.2006.03.020 doi: 10.1016/j.jde.2006.03.020
    [9] S. Ji, Y. Li, Time-periodic solutions to the one-dimensional wave equation with periodic or anti-periodic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 349–371. https://doi.org/10.1017/S0308210505001174 doi: 10.1017/S0308210505001174
    [10] M. Berti, P. Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys., 243 (2003), 315–328. https://doi.org/10.1007/s00220-003-0972-8 doi: 10.1007/s00220-003-0972-8
    [11] H. Brézis, L. Nirenberg, Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math., 31 (1978), 1–30. https://doi.org/10.1002/cpa.3160310102 doi: 10.1002/cpa.3160310102
    [12] K. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math., 34 (1981), 693–712. https://doi.org/10.1002/cpa.3160340503 doi: 10.1002/cpa.3160340503
    [13] W. Craig, A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 125–167.
    [14] P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math., 20 (1967), 145–205. https://doi.org/10.1002/cpa.3160200105 doi: 10.1002/cpa.3160200105
    [15] P. H. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math., 31 (1978), 31–68. https://doi.org/10.1002/cpa.3160310103 doi: 10.1002/cpa.3160310103
    [16] C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479–528. https://doi.org/10.1007/BF02104499 doi: 10.1007/BF02104499
    [17] G. Arioli, H. Koch, Families of periodic solutions for some Hamiltonian PDEs, SIAM J. Appl. Dyn. Syst., 16 (2017), 1–15. https://doi.org/10.1137/16M1070177 doi: 10.1137/16M1070177
    [18] M. Timoumi, periodic and subharmonic solutions for a class of sublinear first-order Hamiltonian systems, Mediterr. J. Math., 17 (2020), 1. https://doi.org/10.1007/s00009-019-1430-y doi: 10.1007/s00009-019-1430-y
    [19] M. Berti, P. Bolle, Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions, Arch. Ration. Mech. Anal., 195 (2010), 609–642. https://doi.org/10.1007/s00205-008-0211-8 doi: 10.1007/s00205-008-0211-8
    [20] J. Chen, Z. Zhang, Infinitely many periodic solutions for a semilinear wave equation in a ball in $\mathbb{R}^n$, J. Differential Equations, 256 (2014), 1718–1734. https://doi.org/10.1016/j.jde.2013.12.004 doi: 10.1016/j.jde.2013.12.004
    [21] J. Chen, Z. Zhang, Existence of infinitely many periodic solutions for the radially symmetric wave equation with resonance, J. Differential Equations, 260 (2016), 6017–6037. https://doi.org/10.1016/j.jde.2015.12.026 doi: 10.1016/j.jde.2015.12.026
    [22] S. Ma, J. Sun, H. Yu, Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a source term, Commun. Anal. Mech., 15 (2023), 245–266. https://doi.org/10.3934/cam.2023013 doi: 10.3934/cam.2023013
    [23] M. Dilmi, S. Otmani, Existence and asymptotic stability for generalized elasticity equation with variable exponent, Opuscula Math., 43 (2023), 409–428. https://doi.org/10.7494/OpMath.2023.43.3.409 doi: 10.7494/OpMath.2023.43.3.409
    [24] K. P. Jin, L. Wang, Uniform decay estimates for the semi-linear wave equation with locally distributed mixed-type damping via arbitrary local viscoelastic versus frictional dissipative effects, Adv. Nonlinear Anal., 12 (2023), 20220285. https://doi.org/10.1515/anona-2022-0285 doi: 10.1515/anona-2022-0285
    [25] Q. Lin, Y. Luo, Blowup phenomena for some fourth-order strain wave equations at arbitrary positive initial energy level, Opuscula Math., 42 (2022), 219–238. https://doi.org/10.7494/opmath.2022.42.2.219 doi: 10.7494/opmath.2022.42.2.219
    [26] J. Pan, J. Zhang, Blow-up solutions with minimal mass for nonlinear Schrödinger equation with variable potential, Adv. Nonlinear Anal., 11 (2022), 58–71. https://doi.org/10.1515/anona-2020-0185 doi: 10.1515/anona-2020-0185
    [27] H. Brézis, Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc. (N.S.), 8 (1983), 409–426. https://doi.org/10.1090/S0273-0979-1983-15105-4 doi: 10.1090/S0273-0979-1983-15105-4
    [28] H. Brézis, J. M. Coron, Periodic solutions of nonlinear wave equations and Hamiltonian systems, Amer. J. Math., 103 (1981), 559–570. https://doi.org/10.2307/2374104 doi: 10.2307/2374104
    [29] K. Chang, S. Wu, S. Li, Multiple periodic solutions for an asymptotically linear wave equation, Indiana Univ. Math. J., 31 (1982), 721–731. https://doi.org/10.1512/iumj.1982.31.31051 doi: 10.1512/iumj.1982.31.31051
    [30] Y. Ding, S. Li, M. Willem, Periodic solutions of symmetric wave equations, J. Differential Equations, 145 (1998), 217–241. https://doi.org/10.1006/jdeq.1997.3380 doi: 10.1006/jdeq.1997.3380
    [31] J. Mawhin, Periodic solutions of some semilinear wave equations and systems: a survey, Chaos Solitons Fractals, 5 (1995), 1651–1669. https://doi.org/10.1016/0960-0779(94)00169-Q doi: 10.1016/0960-0779(94)00169-Q
    [32] W. Craig, C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409–1498. https://doi.org/10.1002/cpa.3160461102 doi: 10.1002/cpa.3160461102
    [33] I. A. Rudakov, Periodic solutions of a nonlinear wave equation with nonconstant coefficients, Math. Notes, 76 (2004), 395–406. https://doi.org/10.1023/B:MATN.0000043467.04680.1d doi: 10.1023/B:MATN.0000043467.04680.1d
    [34] H. Wei, S. Ji, Existence of multiple periodic solutions to a semilinear wave equation with $x$-dependent coefficients, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 2586–2606. https://doi.org/10.1017/prm.2019.25 doi: 10.1017/prm.2019.25
    [35] J. Chen, Periodic solutions to nonlinear wave equation with spatially dependent coefficients, Z. Angew. Math. Phys., 66 (2015), 2095–2107. https://doi.org/10.1007/s00033-015-0497-y doi: 10.1007/s00033-015-0497-y
    [36] S. Ji, Periodic solutions for one dimensional wave equation with bounded nonlinearity, J. Differential Equations, 264 (2018), 5527–5540. https://doi.org/10.1016/j.jde.2018.02.0010022 doi: 10.1016/j.jde.2018.02.0010022
    [37] S. Ji, Y. Li, Time periodic solutions to the one-dimensional nonlinear wave equation, Arch. Ration. Mech. Anal., 199 (2011), 435–451. https://doi.org/10.1007/s00205-010-0328-4 doi: 10.1007/s00205-010-0328-4
    [38] H. Wei, S. Ji, Periodic solutions of a semilinear variable coefficient wave equation under asymptotic nonresonance conditions, Sci. China Math. 66 (2023), 79–90. https://doi.org/10.1007/s11425-020-1900-5
    [39] H. Wei, S. Ji, Infinitely many periodic solutions for a semilinear wave equation with $x$-dependent coefficients, ESAIM Control Optim Calc Var, 26 (2020). https://doi.org/10.1051/cocv/2019007
    [40] I. A. Rudakov, Periodic solutions of the quasilinear equation of forced vibrations of an inhomogeneous string, Math. Notes, 101 (2017), 137–148. https://doi.org/10.1134/S000143461701014X doi: 10.1134/S000143461701014X
    [41] K. Yosida, Functional Analysis, 6$^{th}$ edition, Springer-Verlag, Berlin, 1980. https://link.springer.com/book/10.1007/978-3-642-61859-8
    [42] C. T. Fulton, S. A. Pruess, Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems, J. Math. Anal. Appl., 188 (1994), 297–340. https://doi.org/10.1006/jmaa.1994.1429 doi: 10.1006/jmaa.1994.1429
    [43] T. Bartsch, M. Willem, Periodic solutions of nonautonomous Hamiltonian systems with symmetries, J. Reine Angew. Math., 451 (1994), 149–159. https://doi.org/10.1515/crll.1994.451.149 doi: 10.1515/crll.1994.451.149
    [44] K. Chang, Methods in Nonlinear Analysis, Springer-Verlag, Berlin, 2005. https://link.springer.com/book/10.1007/3-540-29232-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(832) PDF downloads(86) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog