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Abstract: In this paper, we were concerned with the multiplicity of the large periodic solutions to a
super-linear wave equation with a general variable coefficient. In general, the variable coefficient ρ(·)
needs to be satisfied ess inf ηρ(·) > 0 with ηρ(·) = 1

2
ρ′′

ρ
− 1

4

(ρ′
ρ

)2. Especially, the case ηρ(·) = 0 is presented
as an open problem in [Trans. Amer. Math. 349: 2015–2048, 1997]. Here, without any restrictions on
ηρ(·), we established the multiplicity of large periodic solutions for the Dirichlet-Neumann boundary
condition and Dirichlet-Robin boundary condition when the period T = 2π2a−1

b with a, b ∈ N+. The key
ingredient of the proof is the combination of the variational method and an approximation argument.
Since the sign of ηρ(·) can change, our results can be applied to the classical wave equation.
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1. Introduction

We consider the nonlinear wave equation

ρ(x)utt − (ρ(x)ux)x = f (t, x, u), (t, x) ∈ (0,T ) × (0, π), (1.1)

together with time-periodic condition

u(0, x) = u(T, x), ut(0, x) = ut(T, x), (1.2)

where f ∈ C(Ω × R,R) is T periodic with respect to t and the period T is determined by

T =
2a − 1

b
2π, for a, b ∈ N+. (1.3)
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In addition to (1.2), Equation (1.1) is subject to the boundary condition

α1u(t, 0) + β1ux(t, 0) = 0, α2u(t, π) + β2ux(t, π) = 0, (1.4)

where the coefficients αi, βi for i = 1, 2 satisfy

α2
i + β2

i , 0, β1β2 = 0 and β2
1 + β2

2 , 0, (1.5)

which contains the Dirichlet-Neumann boundary condition (e.g., α1 , 0, β1 = 0, α2 = 0, β2 , 0) and the
Dirichlet-Robin boundary condition (e.g., α1 , 0, β1 = 0, α2 , 0, β2 , 0).

Equation (1.1) originated from the following equation

ω(z)utt − (ν(z)uz)z = 0, (1.6)

which is used to describe the forced vibrations of a nonhomogeneous string and the propagation of
seismic waves in nonisotropic media (see [1–9]). Here, u represents the vertical displacement of
the seismic wave, ω(·) denotes the rock density, and ν(·) is the elasticity coefficient. By means of
transformation of variables x =

∫ z

0

(
ω(s)
ν(s)

)1/2
ds, Equation (1.6) is simplified as

ρ(x)utt − (ρ(x)ux)x = 0,

where ρ = (ων)1/2 denotes the impedance function.
Equation (1.1) degenerates to the classical wave equation when ρ(·) ≡ C. Since the 1960s, much

work has focused on periodic solutions of classical wave equations (see [10–16]). For recent results
on Hamiltonian systems, see [17, 18], and on higher-dimensional problems, see [19–21]. For the Euler
equation, see [22]. In addition, for stability results, see [23, 24], and for blow-up solutions, see [25, 26].
Many of the works are based on the spectrum made up of the eigenvalues n2 −m2 with n ∈ N,m ∈ Z for
the frequency ω ∈ Q, for example, [27–31]. This property ensures that the desired compact conditions
hold. However, for the frequency ω ∈ R\Q, the “small divisor problem” raised naturally in realistic
models, such as the wave equations and the beam equations. The tools to solve this problem are the
Nash-Morse iteration and KAM (Kolmogorov-Arnold-Moser) theory (see [16, 32]).

In recent decades, the nonlinear wave equations with variable coefficient have attracted broad interests.
For the nonlinearity satisfying Lipschitz continuity, Barbu and Pavel in [2] used the monotonicity method
to establish a periodic solution under the assumption ess inf ηρ(·) > 0 with ηρ(·) = 1

2
ρ′′

ρ
− 1

4

(ρ′
ρ

)2. The
appearance of the function ηρ(·) is due to the Liouville transformation in investigating the Sturm-
Liouville problem. The condition ess inf ηρ(·) > 0 can make sure that the kernel space of the variable
coefficient wave operator has finite dimensions, then the free oscillations can be easily controlled. On
the other hand, it is well known that the solvability of the nonlinear problems depend on the properties of
nonlinear terms. For the nonlinearity with power-law growth, Rudakov in [33] constructed the periodic
solutions by the variational method. Ji and his collaborators in [5, 6, 8, 9, 34] obtained some interesting
results on periodic solutions for several classes of nonlinear problems under various homogeneous
boundary conditions via variational methods. With the help of a global inverse function theorem, Chen
in [35] got an existence and uniqueness theorem for a system with a variable coefficient. Ji et al. in [7]
found that there is at least two periodic solutions on some subspaces of the L2 space by using the
topological degree theory. These works are all focused on the case ess inf ηρ(·) > 0. However, for the
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case of ηρ(·) = 0, the kernel space becomes infinite dimensional, which, together with the effects of a
variable coefficient, provokes further difficulties; hence, this problem was posed by Barbu and Pavel
in [2] as an open problem. Recently, Ji and his collaborators considered this problem and obtained some
interesting results in [36–38], where ηρ(·) could be equal to zero or even be of sign-changing.

In addition to the effect of the sign of ηρ(·) on the dimension of kernel space, the spectrum of the
variable coefficient wave operator has the accumulation points (e.g., [39]); thus, the existing compactness
conditions are not sufficient to deal with super-linear problems. However, for the Dirichlet-Neumann
boundary condition and the Dirichlet-Robin boundary condition, when T satisfies (1.3), the compactness
can be improved to be good enough. Recently, when the sign of ηρ(·) can change, Rudakov in [40]
assumed ηρ(·) ,

ρ′(π)
ρ(π) to guarantee that the dimension of the kernel is finite, then infinitely many periodic

solutions are constructed for the super-linear problem under the Dirichlet-Neumann boundary condition.
This paper aims to establish the multiplicity of large periodic solutions to the problems (1.1), (1.2),

and (1.4) with general variable coefficients. The word “general” means that we do not impose any
restrictions on ηρ(·). This results in the kernel space being infinitely dimensional. To overcome this
difficulty, we make use of the monotonicity method and approximation argument to estimate the
component of solutions in the kernel space. To get the discrete spectrum, we assume that the period
T satisfies (1.3), which guarantees that the subspace E+ ⊕ E− of function space E defined in Section
2 is compactly embedded in Lp space for p > 1. This compactness condition is sufficient for dealing
with the super-linear problem. Compared with the results in [40], we remove the restriction on ηρ(·) and
consider the Dirichlet-Robin boundary condition. Since the sign of ηρ(·) can change, our results can be
applied to the classical wave equation.

In this paper, we make the following assumptions:
(H1) ρ ∈ C2[0, π] and ρ(x) > 0, ∀x ∈ [0, π];
(H2) − f̃ (·, ·, ξ) = f̃ (·, ·,−ξ) for all (·, ·, ξ) ∈ Ω×R, and f̃ (·, ·, ξ) is nondecreasing in ξ and f̃ (·, ·, ξ) = 0

if, and only if, ξ = 0, where

f̃ (t, x, ξ) =
f (t, x, ξ)
ρ(x)

.

(H3) There are M > 0, µ > 2, and a1, a2 > 0 such that

µF̃(·, ·, ξ) ≤ f̃ (·, ·, ξ)ξ, ∀|ξ| ≥ M, (1.7)

and
| f̃ (·, ·, ξ)| ≤ a1|ξ|

µ−1 + a2, ∀(·, ·, ξ) ∈ Ω × R, (1.8)

where

F̃(·, ·, ξ) =

∫ ξ

0
f̃ (·, ·, s)ds.

At the end of this section, we show the outline of this paper. Section 2 gives the main result and
some preliminaries and proves that the periodic solutions of problems (1.1), (1.2), and (1.4) are equal
to the critical points of the variational problem. We study the restricted functional on a sequence of
subspaces with increasing dimension and construct approximate solutions in Section 3. Finally, we
obtain the main result by combining uniform boundedness and an approximation argument in Section 4,
and we present our conclusions in Section 5.
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2. Notations, definitions and results

Let

Ψ = {ψ ∈ C2(Ω) : ψ(0, x) = ψ(T, x), ψt(0, x) = ψt(T, x),
α1ψ(t, 0) + β1ψx(t, 0) = 0, α2ψ(t, π) + β2ψx(t, π) = 0}

and

Lp(Ω) =
{
u : ‖u‖p

Lp(Ω) =

∫
Ω

|u(t, x)|pρ(x)dtdx < ∞
}
, p ≥ 1.

The inner product on the Hilbert space L2(Ω) is defined as

〈v,w〉 =

∫
Ω

v(t, x)w(t, x)ρ(x)dtdx, ∀v,w ∈ L2(Ω).

Definition 2.1. A function u ∈ Lp(Ω) is a weak solution of the problems (1.1), (1.2), and (1.4) if∫
Ω

u(ρψtt − (ρψx)x)dtdx −
∫

Ω

f̃ (t, x, u)ψρdtdx = 0, ∀ψ ∈ Ψ.

The main results are given as follows.

Theorem 2.1. Let αi, βi satisfy (1.5) for i = 1, 2, the period T satisfy (1.3), and let ρ and f satisfy
(H1)–(H3), then, there are infinitely many periodic solutions un for the problems (1.1), (1.2), and (1.4),
satisfying

‖un‖Lµ(Ω) → ∞, as n→ ∞.

Furthermore, un ∈ C(Ω) ∩ H1(Ω) for the Dirichlet-Neumann boundary condition and un ∈ C(Ω) for the
Dirichlet-Robin boundary condition.

The sequence of eigenfunctions {φ j(t)ϕk(x) : j ∈ Z, k ∈ N} forms a completely orthonormal basis of
L2(Ω) ( [41]), where

φ j(t) =
eiν jt

√
T

with ν j =
2 jπ
T
, j ∈ Z,

and λk, ϕk(x) are determined by the following Sturm-Liouville problem

(ρ(x)ϕ′k(x))′ = −λkρ(x)ϕk(x), k ∈ N,

α1ϕk(0) + β1ϕ
′
k(0) = 0, α2ϕk(π) + β2ϕ

′
k(π) = 0.

According to Section 4 in [42], a direct calculation shows that the eigenvalues λk have the following
asymptotic formula

λk = (k +
1
2

)2 +
κ

π
+ O(

1
k2 ), (2.1)

where

κ =

 −ρ
′(π)
ρ(π) +

∫ π

0
ηρ(x)dx, for Dirichlet − Neumann boundary condition,

2α2
β2
−

ρ′(π)
ρ(π) +

∫ π

0
ηρ(x)dx, for Dirichlet − Robin boundary condition,
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with

ηρ(x) =
1
2
ρ′′

ρ
−

1
4

(
ρ′

ρ

)2

.

The linear operator L0 is defined as

L0ψ = ρ−1 (ρψtt − (ρψx)x) , ∀ψ ∈ Ψ,

and its extension L is a self-adjoint operator in L2(Ω). Furthermore, we have λk − ν
2
j as the eigenvalues

of L. Clearly, u ∈ L2(Ω) is a weak solution of problems (1.1), (1.2), and (1.4) if, and only if,

Lu = f̃ (t, x, u).

For any u, v ∈ L2(Ω), we rewrite it as u(t, x) =
∑
j,k

u jkφ j(t)ϕk(x) and v(t, x) =
∑
j,k

v jkφ j(t)ϕk(x), where u jk

and v jk are the Fourier coefficients. Set

E+ = span
{
φ j(t)ϕk(x) : λk > ν

2
j

}
,

E0 = span
{
φ j(t)ϕk(x) : λk = ν2

j

}
,

E− = span
{
φ j(t)ϕk(x) : λk < ν

2
j

}
,

then their direct sum E := E+ ⊕ E− ⊕ E0 is a Hilbert space with the inner product

(u, v) =
∑
λk,ν

2
j

|λk − ν
2
j |u jkv̄ jk +

∑
λk=ν2

j

u jkv̄ jk,

and its norm is denoted by ‖u‖E. For any u ∈ E, split it into u = u+ + u0 + u− with u+ ∈ E+, u0 ∈ E0,
u− ∈ E−. In particular,

‖u0‖E = ‖u0‖L2(Ω).

For any m, n ∈ N+, denote the finite dimensional spaces by

Wm = span
{
φ jϕk | −m ≤ j ≤ m, 0 ≤ k ≤ m

}
Define the “upper direct sum” spaces and the “under direct sum” spaces by

Em =
(
Wm ∩ (E− ⊕ E0)

)
⊕ E+, En = E− ⊕ E0 ⊕

(
Wn ∩ E+

)
.

Let
Em

n = Em ∩ En.

Obviously, Em ⊂ Em+1 and Em
n is a finite dimensional space. Furthermore,

E =
⋃

m∈N+

Em.

Define the energy functional corresponding to problems (1.1), (1.2), and (1.4) as

Φ(u) =
1
2

(‖u+‖2E − ‖u
−‖2E) −

∫
Ω

F̃(t, x, u)ρdtdx, ∀u ∈ E. (2.2)

Communications in Analysis and Mechanics Volume 16, Issue 2, 278–292.



283

Since f̃ is odd, Φ is an even C1 functional on E. In addition,

〈Φ′(u), v〉 = (u+, v+) − (u−, v−) −
∫

Ω

f̃ (t, x, u)vρdtdx, ∀u, v ∈ E. (2.3)

Therefore, u is a weak solution of problems (1.1), (1.2), and (1.4) if, and only if, u is a critical point of
Φ, namely,

Φ′(u) = 0.

In what follows, we first consider the restricted functional Φm = Φ|Em and construct its critical points.

3. Constructing approximate solutions

Proposition 3.1. For any q > 1, the embedding

E− ⊕ E+ ↪→ Lq(Ω) (3.1)

is compact.

Proof. A similar proof as Lemma 2.1 in [36] shows that the series∑
λk,ν

2
j

1
(λk − ν

2
j)2

is convergent. Thus,
lim

j,k→∞

∣∣∣λk − ν
2
j

∣∣∣ = ∞, for λk , ν
2
j .

In consequence, by using the method of Lemma 1 in [40], we obtain the result.

Lemma 3.1. For any m ∈ N+, let {ui} ⊂ Em satisfy Φm(ui) ≤ d̃ (a constant) and Φ′m(ui)→ 0 as i→ ∞,
then {ui} has a convergent subsequence, i.e., Φm satisfies the Palais-Smale (PS ) condition.

Proof. Split ui = u+
i + ûi with u+

i ∈ E+, ûi ∈ Wm∩ (E−⊕E0). Obviously, ûi = u−i + u0
i with u−i ∈ Wm∩E−,

u0
i ∈ Wm ∩ E0.

Since Φm(ui) ≤ d̃ and 〈Φ′m(ui), ui〉 → 0, by (1.7), we have,

o(1)‖ui‖E + (
1
2
−

1
µ

)
∫

Ω

f̃ (t, x, ui)uiρdtdx ≤ d̃ + M1,

for some constant M1 > 0. Thus, ∫
Ω

f̃ (t, x, ui)uiρdtdx ≤ M2,

for some constant M2 > 0. Taking advantage of (1.7) again and the above estimate, we have∫
Ω

F̃(t, x, ui)ρdtdx ≤ M3, (3.2)

for some constant M3 > 0.
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According to (1.7), it follows that

F̃(t, x, ui) ≥ a3|ui|
µ − a4, (3.3)

for some constants a3, a4 > 0. By (3.2) and (3.3), we have

‖ui‖Lµ(Ω) ≤ M4, (3.4)

for some constant M4 > 0. Moreover, from (1.8), we have

‖ f̃ (t, x, ui)‖Lµ′ (Ω) ≤ M5, (3.5)

where µ′ = µ/(µ − 1).
Noting Φ′m(ui)→ 0, by (3.1), (3.4), and (3.5), it follows that

‖u+
i ‖

2
E ≤ o(1)‖u+

i ‖E + M6‖u+
i ‖E.

Therefore, {u+
i } is bounded in E.

By dim
(
Wm ∩ (E− ⊕ E0)

)
< ∞, from (3.4), we have that {ûi} is bounded in E.

Consequently, {ui} is bounded in E, thus ui ⇀ u in E as i → ∞ for some u ∈ E. Let u+, û denote
weak limits of {u+

i }, {ûi}, respectively, where u+
i , u

+ ∈ E+, ûi, û ∈ Wm ∩ (E− ⊕ E0).
Since dim

(
Wm ∩ (E− ⊕ E0)

)
< ∞, then

‖ûi − û‖E → 0, as i→ ∞.

For u+
i ∈ E+, from (2.3), it follows that

‖u+
i − u+‖2E ≤ o(1)‖u+

i − u+‖E + ‖ f̃ (t, x, ui)‖Lµ′ (Ω)‖u
+
i − u+‖Lµ(Ω) + o(1).

By (3.1), u+
i weakly converges to u+, and it follows that

‖u+
i − u+‖Lµ(Ω) → 0, as i→ ∞.

Therefore,
‖u+

i − u+‖E → 0, as i→ ∞,

which completes the proof.

Proposition 3.2. Set

ζn = sup
u∈(En−1)⊥\{0}

‖u‖Lµ(Ω)

‖u‖E
, (3.6)

then ζn → 0 as n→ ∞.

Proof. Noting that (En−1)⊥ ⊂ E+ and the embedding E+ ↪→ Lµ(Ω) is compact, a similar proof as [43]
yields the result.

Lemma 3.2. For any n ∈ N+, there exist the constants σn, rn > 0 satisfying

Φ(u) ≥ σn, ∀u ∈ (En−1)⊥ ∩ S rn := {u ∈ E : ‖u‖E = rn},

and
σn → ∞, as n→ ∞.
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Proof. From (3.6), (1.8), and (2.2), for u ∈ (En−1)⊥ ⊂ E+, it follows that

Φ(u) ≥
1
2
‖u‖2E − a1‖u‖

µ
Eζ

µ
n − a2Tπ.

Taking rn = (µa1ζ
µ
n )

1
2−µ in the above estimate, with the help of µ > 2 and ζn → 0 as n→ ∞, for n large

enough, it follows that

Φ(u) ≥ (
1
2
−

1
µ

)r2
n − a2Tπ > 0.

For n large enough, σn := (1
2 −

1
µ
)r2

n − a2Tπ > 0 and σn → ∞ as n→ ∞, and the proof is complete.

Lemma 3.3. For any n ∈ N+, there exist the constants Rn, %n > 0 satisfying

Φ(u) ≤ 0, ∀u ∈ En, ‖u‖E ≥ Rn,

Φ(u) ≤ %n, ∀u ∈ En, ‖u‖E ≤ Rn.

Proof. By (3.3), it follows that

Φ(u) ≤
1
2

(‖u+‖2E − ‖u
−‖2E) − M8(‖u0‖

µ

Lµ(Ω) + ‖u+‖
µ

Lµ(Ω)) + M7,

for some positive constants M7,M8.
Since u+ ∈ Wn ∩ E+ and dim(Wn ∩ E+) < ∞, then ‖u+‖

µ

Lµ(Ω) ≥ C1‖u+‖
µ
E. Moreover, since ‖u0‖E =

‖u0‖L2(Ω) and Lµ(Ω) ↪→ L2(Ω), then C2‖u0‖E ≤ ‖u0‖Lµ(Ω). Therefore,

Φ(u) ≤
1
2

(‖u+‖2E − ‖u
−‖2E) − M8(C2‖u0‖

µ
E + C1‖u+‖

µ
E) + M7.

Thus, noting µ > 2, we arrive at the result.

Let
Fmn = {γ ∈ C(Bm

n , E
m) | γ is odd and γ|∂Bm

n = id},

where Bm
n = {u ∈ Em

n | ‖u‖E ≤ Rn}, ∂Bm
n denotes the boundary of Bm

n , the constant Rn is given in Lemma
3.3, and id is the identity map.

Define Ac = {u ∈ Em | Φm(u) ≤ c}, ∀c ∈ R, and

K = {u ∈ Em | Φ′m(u) = 0}.

Define
cmn = inf

γ∈Fmn
max
u∈Bm

n

Φm(γ(u)). (3.7)

Lemma 3.4. For n large, cmn are the critical values of Φm and satisfy

0 < σn ≤ cmn ≤ %n.
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Proof. First, it is proved by contradiction. In virtue of Φm satisfying the (PS ) condition, suppose that
cmn are not the critical values of Φm and there is ε̄ > 0 satisfying Φ−1

m [cmn − ε̄, cmn + ε̄] ∩ K = ∅. By the
definition of cmn and taking γ0 ∈ Fmn such that maxu∈Bm

n Φm(γ0(u)) ≤ cmn + ε̄, we have

γ0(Bm
n ) ⊂ Acmn+ε̄.

By the standard deformation lemma, there is an odd mapping ηt(·) := η(t, ·) ∈ C([0, 1] × Em, Em)
such that η1(Acmn+ε̄) ⊂ Acmn−ε̄, which implies

η1(γ0(Bm
n )) ⊂ Acmn−ε̄.

Consequently, η1 ◦ γ0 |∂Bm
n = id and η1 ◦ γ0 is odd, i.e., η1 ◦ γ0 ∈ Fmn. Therefore,

cmn ≤ max
u∈Bm

n

Φm(η1(γ0(u))) ≤ cmn − ε̄.

This is a contradiction.
Now, we prove σn ≤ cmn ≤ %n. According to Lemma 3.3 and the definitions of cmn, we have cmn ≤ %n.
On the other hand, for each γ ∈ Fmn, let

Brn = {u ∈ Bm
n | ‖γ(u)‖E < rn},

where the constant rn is present in Lemma 3.2. Since γ is odd continuous, then Brn is a symmetrically
bounded open ball and 0 ∈ Brn . Moreover, from Lemmas 3.2 and 3.3, it is easy to see Rn > rn. The
combining of Rn > rn and γ|∂Bm

n = id yields Brn ∩ ∂Bm
n = ∅. Let P : Em → Em

n−1 be the natural projection.
Therefore, by the Borsuk-Ulam theorem [44], there exists u0 ∈ ∂Brn satisfying Pγ(u0) = 0, then we have
‖γ(u0)‖E = rn and γ(u0) ∈ (En−1)⊥. Thus, by Lemma 3.2, we have

max
u∈Bm

n

Φm(γ(u)) ≥ σn.

We arrive at the conclusion.

For each n large, suppose that umn are the critical points of Φm corresponding to cmn. In what follows,
to obtain Theorem 2.1, we are going to prove the uniform boundedness of {u±mn} for any n ∈ N+, then we
use the approximation argument to get the desired results.

4. Proof of Theorem 2.1

Let Mi > 0 (i = 9, 10, 11, 12) denote the constants that are independent of m.
We have

〈Lu, v〉 = (u+, v+) − (u−, v−), ∀u, v ∈ E.

Moreover, since umn are the critical points of Φm, then

(u+
mn, v

+) − (u−mn, v
−) =

∫
Ω

f̃ (t, x, umn)vρdtdx, ∀v ∈ Em.

Thus, for any v ∈ Em, it follows that

〈Lumn, v〉 = 〈 f̃ (t, x, umn), v〉. (4.1)
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Lemma 4.1. The sequence {u±mn} is uniformly bounded for any n ∈ N+.

Proof. Since

〈Lumn, umn〉 =

∫
Ω

f̃ (t, x, umn)umnρdtdx, (4.2)

from (1.7), (2.2), (4.2), and Lemma 3.4, there exists M9 > 0 such that

(
1
2
−

1
µ

)
∫

Ω

f̃ (t, x, umn)umnρdtdx ≤ %n + M9.

Thus, by (1.7), we have that
∫

Ω
F̃(t, x, umn)ρdtdx is uniformly bounded.

From (3.3), it follows that
‖umn‖Lµ(Ω) ≤ M10. (4.3)

From (1.8), it follows that
‖ f̃ (t, x, umn)‖Lµ′ (Ω) ≤ M11, (4.4)

where µ′ = µ/(µ − 1). Since

‖u+
mn‖

2
E ≤ ‖ f̃ (t, x, umn)‖Lµ′ (Ω)‖u

+
mn‖Lµ(Ω)

≤ M12‖u+
mn‖E,

we have that {u+
mn} is uniformly bounded for any n ∈ N+. The similar conclusion holds for {u−mn}. We

arrive at the conclusion.

Since Lp(Ω) and E are reflexive and the embedding E− ⊕ E+ ↪→ Lq(Ω) is compact for q > 1, then by
the above lemma and (4.3), without loss of generality, we have

umn ⇀ un in Lµ(Ω), as m→ ∞,

u±mn ⇀ u±n in E, as m→ ∞, (4.5)
u±mn → u±n in Lµ(Ω), as m→ ∞. (4.6)

Thanks to the above lemmas, now let’s prove Theorem 2.1.

Proof. Let Pm : E → Em be the natural projection. According to u±mn ∈ Em and u±n ∈ E =
⋃

m∈N+ Em, it
follows that

‖u+
mn‖

2
E = (u+

mn, u
+
mn) = (u+

mn, u
+
mn − Pmu+

n ) + (u+
mn, u

+
n ).

In virtue of (3.1) and ‖(Pm − id)u+
n ‖E → 0 as m→ ∞, we have

‖(Pm − id)u+
n ‖Lµ(Ω) → 0, as m→ ∞. (4.7)

Replacing v with u+
mn − Pmu+

n in (4.1), with the aid of (4.4)–(4.7), we have

(u+
mn, u

+
mn − Pmu+

n ) =

∫
Ω

f̃ (t, x, umn)(u+
mn − Pmu+

n )ρdtdx

≤ M11‖u+
mn − Pmu+

n ‖Lµ(Ω)

≤ M11‖u+
mn − u+

n ‖Lµ(Ω) + M11‖(id − Pm)u+
n ‖Lµ(Ω) → 0,
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as m→ ∞. Therefore, by (4.5), we have

‖u+
mn‖E → ‖u

+
n ‖E, as m→ ∞.

By using (4.5) again, a similar proof shows

‖u−mn‖E → ‖u
−
n ‖E, as m→ ∞.

Consequently,
‖u±mn − u±n ‖E → 0, as m→ ∞.

To continue discussion, for any v ∈ E and since (id − Pm)v ∈ (Em)⊥ and umn − Pmun ∈ Em, umn is the
critical point of Φm, then from (4.1), we have

〈Lumn, umn − v〉 = 〈Lumn, umn − Pmv〉 + 〈Lumn, Pmv − v〉

= 〈 f̃ (t, x, umn), umn − Pmv〉.

Since f̃ is monotone in u, a simple calculation yields

〈Lumn, umn − v〉 − 〈 f̃ (t, x, v), umn − v〉 ≥ 〈 f̃ (t, x, umn), v − Pmv〉. (4.8)

Moreover, according to ‖(id − Pm)v‖Lµ(Ω) → 0 and (4.4), we have

|〈 f̃ (t, x, umn), (id − Pm)v〉| ≤ ‖ f̃ (t, x, umn)‖Lµ′ (Ω)‖(id − Pm)v‖Lµ(Ω) −→ 0, (4.9)

as m→ ∞. In virtue of the embedding Lµ(Ω) ↪→ L2(Ω) and umn ⇀ un in Lµ(Ω), it follows that umn ⇀ un

in L2(Ω) as m→ ∞. From (4.8) and (4.9), with the help of u±mn → u±n in E, we have

0 = lim
m→∞
〈 f̃ (t, x, umn), v − Pmv〉

≤ lim
m→∞
〈Lumn, umn − v〉 − lim

m→∞
〈 f̃ (t, x, v), umn − v〉

= 〈Lun, un − v〉 − 〈 f̃ (t, x, v), un − v〉. (4.10)

For s > 0 and ψ ∈ E, taking v = un − sψ and dividing by s in (4.10) shows

〈Lun, ψ〉 − 〈 f̃ (t, x, un − sψ), ψ〉 ≥ 0,

then letting s→ 0 gets
〈Lun, ψ〉 − 〈 f̃ (t, x, un), ψ〉 ≥ 0.

By using the arbitrariness of ψ, it follows that

〈Lun, ψ〉 − 〈 f̃ (t, x, un), ψ〉 = 0.

Therefore, un is the critical point of Φ for n large enough.
Moreover, since f̃ is a nondecreasing function with respect to u, then its primitive function F̃ is

convex with respect to u. Thus, according to u±mn → u±n in E, we have

Φm(umn)→ Φ(un), as m→ ∞.
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In consequence, by (1.8), Lemma 3.2 and the embedding Lµ(Ω) ↪→ L1(Ω), we have

σn ≤ Φ(un) ≤
a1

2
‖un‖

µ

Lµ(Ω) + C3‖un‖Lµ(Ω),

where the constant C3 is independent of n. Thus, taking into account σn → ∞ as n→ ∞, we have

‖un‖Lµ(Ω) → ∞, as n→ ∞.

Moreover, we have
〈Lun, v〉 − 〈 f̃ (t, x, un), v〉 = 0, ∀v ∈ E.

Replacing v with φ j(t)ϕk(x) in the above equation, we obtain

(λk − ν
2
j)u jk = f̃ jk,

where u jk, f̃ jk, respectively, denote the Fourier coefficients of un, f̃ . Noting that the series
∑
λk,ν

2
j

1
|λk−ν

2
j |
µ

is convergent and the combination of the Hausdorff-Young and Hölder inequalities yields∑
λk,ν

2
j

|u jk| ≤
( ∑
λk,ν

2
j

1
|λk − ν

2
j |
µ

) 1
µ
( ∑
λk,ν

2
j

| f̃ jk|
µ′
) 1
µ′

≤ C4‖ f̃ ‖Lµ′ (Ω).

Therefore, recalling dim E0 < ∞ (see [36]), we have un ∈ C(Ω).
Furthermore, under the Dirichlet-Neumann boundary condition, the system{ ϕ′k

√
λk

}
forms an orthonormal basis of L2(0, π). By the methods in [40], we have

|λk − ν
2
j | ≥ C0(k + | j|), for λk , ν

2
j .

By the above estimate and (2.1), the sequences { | j|
|λk−ν

2
j |
} and {

√
λk

|λk−ν
2
j |
} are bounded. Therefore, we have

un ∈ H1(Ω), and the proof is complete.

5. Conclusion

In this paper, we established the multiplicity of large periodic solutions for the super-linear problem
under the Dirichlet-Neumann boundary condition and the Dirichlet-Robin boundary condition. We
remove the only restrict condition ηρ(·) ,

ρ′(π)
ρ(π) on ηρ(·) in [40]; thus, we do not impose any restrictions

on ηρ(·). To get better compactness conditions, we assume the period T satisfies (1.3). Finally, since the
sign of ηρ(·) can change, our results can be applied to the classical wave equation.
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