Research article

Oscillation theorems for fourth-order quasi-linear delay differential equations

  • Received: 14 December 2022 Revised: 12 March 2023 Accepted: 20 March 2023 Published: 08 May 2023
  • MSC : 34C10, 34K11

  • In this paper, we deal with the asymptotic and oscillatory behavior of quasi-linear delay differential equations of fourth order. We first find new properties for a class of positive solutions of the studied equation, $ \mathcal{N}_{a} $. As an extension of the approach taken in [1], we establish a new criterion that guarantees that $ \mathcal{N}_{a} = \emptyset $. Then, we create a new oscillation criterion.

    Citation: Fahd Masood, Osama Moaaz, Shyam Sundar Santra, U. Fernandez-Gamiz, Hamdy A. El-Metwally. Oscillation theorems for fourth-order quasi-linear delay differential equations[J]. AIMS Mathematics, 2023, 8(7): 16291-16307. doi: 10.3934/math.2023834

    Related Papers:

  • In this paper, we deal with the asymptotic and oscillatory behavior of quasi-linear delay differential equations of fourth order. We first find new properties for a class of positive solutions of the studied equation, $ \mathcal{N}_{a} $. As an extension of the approach taken in [1], we establish a new criterion that guarantees that $ \mathcal{N}_{a} = \emptyset $. Then, we create a new oscillation criterion.



    加载中


    [1] R. Koplatadze, G. Kvinikadze, I. P. Stavroulakis, Properties $A$ and $B$ of $n$th order linear differential equations with deviating argument, Georgian Math. J., 6 (1999), 553–566. https://doi.org/10.1515/GMJ.1999.553 doi: 10.1515/GMJ.1999.553
    [2] W. Wang, Further results on mean-square exponential Input-to-State stability of stochastic delayed Cohen-Grossberg neural networks, Neural Process. Lett., 2022. https://doi.org/10.1007/s11063-022-10974-8 doi: 10.1007/s11063-022-10974-8
    [3] C. Huang, B. Liu, H. Yang, J. Cao, Positive almost periodicity on SICNNs incorporating mixed delays and D operator, Nonlinear Anal. Model. Control, 27 (2022), 719–739. https://doi.org/10.15388/namc.2022.27.27417 doi: 10.15388/namc.2022.27.27417
    [4] X. Zhang, H. Hu, Convergence in a system of critical neutral functional differential equations, Appl. Math. Lett., 107 (2020), 106385. https://doi.org/10.1016/j.aml.2020.106385 doi: 10.1016/j.aml.2020.106385
    [5] K. S. Chiu, T. Li, Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments, Math. Nachr., 292 (2019), 2153–2164. https://doi.org/10.1002/mana.201800053 doi: 10.1002/mana.201800053
    [6] G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, New York: Marcel Dekker, 1987.
    [7] I. Gyori, G. Ladas, Oscillation theory of delay differential equations with applications, Oxford: Clarendon Press, 1991.
    [8] M. N. Oguztoreli, R. B. Stein, An analysis of oscillations in neuro-muscular systems, J. Math. Biol., 2 (1975), 87–105. https://doi.org/10.1007/BF00275922 doi: 10.1007/BF00275922
    [9] J. Džurina, S. R. Grace, I. Jadlovská, T. Li, On the oscillation of fourth-order delay differential equations, Adv. Differ. Equ., 2019 (2019), 118. https://doi.org/10.1186/s13662-019-2060-1 doi: 10.1186/s13662-019-2060-1
    [10] T. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59. https://doi.org/10.1016/j.aml.2016.11.007 doi: 10.1016/j.aml.2016.11.007
    [11] G. E. Chatzarakis, J. Dzurina, I. Jadlovska, New oscillation criteria for second-order half-linear advanced differential equations, Appl. Math. Comput., 347 (2019), 404–416. https://doi.org/10.1016/j.amc.2018.10.091 doi: 10.1016/j.amc.2018.10.091
    [12] O. Bazighifan, C. Cesarano, Some new oscillation criteria for second order neutral differential equations with delayed arguments, Mathematics, 7 (2019), 619. https://doi.org/10.3390/math7070619 doi: 10.3390/math7070619
    [13] J. Džurina, S. R. Grace, I. Jadlovská, T. Li, Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. https://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196
    [14] C. Jayakumar, S. S. Santra, D. Baleanu, R. Edwan, V. Govindan, A. Murugesan, et al., Oscillation result for half-linear delay difference equations of second-order, Math. Biosci. Eng., 19 (2022), 3879–3891. http://dx.doi.org/10.3934/mbe.2022178 doi: 10.3934/mbe.2022178
    [15] S. S. Santra, A. Scapellato, Some conditions for the oscillation of second-order differential equations with several mixed delays, J. Fixed Point Theory Appl., 24 (2022), 18. https://doi.org/10.1007/s11784-021-00925-6 doi: 10.1007/s11784-021-00925-6
    [16] O. Bazighifan, S. S. Santra, Second-order differential equations: Asymptotic behavior of the solutions, Miskolc Math. Notes, 23 (2022), 105–115. http://dx.doi.org/10.18514/MMN.2022.3369 doi: 10.18514/MMN.2022.3369
    [17] S. S. Santra, A. Scapellato, O. Moaaz, Second-order impulsive differential systems of mixed type: oscillation theorems, Bound. Value Probl., 2022 (2022), 67. https://doi.org/10.1186/s13661-022-01648-4 doi: 10.1186/s13661-022-01648-4
    [18] S. S. Santra, D. Baleanu, K. M. Khedher, O. Moaaz, First-order impulsive differential systems: sufficient and necessary conditions for oscillatory or asymptotic behavior, Adv. Differ. Equ., 2021 (2021), 283. https://doi.org/10.1186/s13662-021-03446-1 doi: 10.1186/s13662-021-03446-1
    [19] A. K. Tripathy, S. S. Santra, Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficient, Math. Bohem., 146 (2021), 185–197.
    [20] J. Alzabut, S. R. Grace, S. S. Santra, G. N. Chhatria, Asymptotic and oscillatory behaviour of third order non-linear differential equations with canonical operator and mixed neutral terms, Qual. Theory Dyn. Syst., 22 (2023), 15. https://doi.org/10.1007/s12346-022-00715-6 doi: 10.1007/s12346-022-00715-6
    [21] S. R. Grace, G. N. Chhatria, On oscillatory behaviour of third-order half-linear dynamic equations on time scales, Opus. Math., 42 (2022), 849–865. http://dx.doi.org/10.7494/OpMath.2022.42.6.849 doi: 10.7494/OpMath.2022.42.6.849
    [22] O. Bazighifan, Nonlinear differential equations of fourth-order: qualitative properties of the solutions, AIMS Math., 5 (2020), 6436–6447. http://dx.doi.org/10.3934/math.2020414 doi: 10.3934/math.2020414
    [23] A. Almutairi, O. Bazighifan, B. Almarri, M. A. Aiyashi, K. Nonlaopon, Oscillation criteria of solutions of fourth-order neutral differential equations, Fractal Fract., 5 (2021), 155. https://doi.org/10.3390/fractalfract5040155 doi: 10.3390/fractalfract5040155
    [24] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation criteria for certain nth order differential equations with deviating arguments, J. Math. Analy. Appl., 262 (2001), 601–622. https://doi.org/10.1006/jmaa.2001.7571 doi: 10.1006/jmaa.2001.7571
    [25] B. Baculikova, J. Dzurina, J. R. Graef, On the oscillation of higher order delay differential equations, J. Math. Sci., 184 (2012), 398–400.
    [26] T. Li, Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61 (2016), 35–41. https://doi.org/10.1016/j.aml.2016.04.012 doi: 10.1016/j.aml.2016.04.012
    [27] R. P. Agarwal, M. Bohner, T. Li, C. Zhang, A new approach in the study of oscillatory behavior of even-order neutral delay differential equations, Appl. Math. Comput., 225 (2013), 787–794. https://doi.org/10.1016/j.amc.2013.09.037 doi: 10.1016/j.amc.2013.09.037
    [28] B. Baculıkova, J. Dzurina, T. Li, Oscillation results for even-order quasilinear neutral functional differential equations, Electron. J. Diffe. Eq., 2011 (2011), 1–9.
    [29] T. Li, Z. Han, P. Zhao, S. Sun, Oscillation of even-order neutral delay differential equations, Adv. Diff. Equ., 2010 (2010), 184180. https://doi.org/10.1155/2010/184180 doi: 10.1155/2010/184180
    [30] B. Baculıkova, J. Dzurina, Oscillation theorems for higher order neutral differential equations, Appl. Math. Comput., 219 (2012), 3769–3778. https://doi.org/10.1016/j.amc.2012.10.006 doi: 10.1016/j.amc.2012.10.006
    [31] B. Baculikova, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett., 91 (2019), 68–75. https://doi.org/10.1016/j.aml.2018.11.021 doi: 10.1016/j.aml.2018.11.021
    [32] B. Baculíková, J. Dzurina, Oscillatory criteria via linearization of half-linear second order delay differential equations, Opusc. Math., 40 (2020), 523–536. https://doi.org/10.7494/OpMath.2020.40.5.523 doi: 10.7494/OpMath.2020.40.5.523
    [33] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for difference and functional differential equations, Dordrecht: Kluwer Academic, 2000.
    [34] I. T. Kiguradze, T. A. Chanturiya, Asymptotic properties of solutions of nonautonomous ordinary differential equations, Dordrecht: Kluwer Academic, 1993.
    [35] C. Zhang, R. P. Agarwal, M. Bohner, T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett., 26 (2013), 179–183. https://doi.org/10.1016/j.aml.2012.08.004 doi: 10.1016/j.aml.2012.08.004
    [36] T. Kusano, M. Naito, Comparison theorems for functional differential equations with deviating arguments, J. Math. Soc. Jpn., 3 (1981), 509–532.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1165) PDF downloads(78) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog