In this paper, we investigate Zermelo's navigation problem for some special rotation surfaces. In this respect, we find some Randers-type metrics for these rotation surfaces. Furthermore, we get the H-distortion for the metric induced by surfaces.
Citation: Yanlin Li, Piscoran Laurian-Ioan, Lamia Saeed Alqahtani, Ali H. Alkhaldi, Akram Ali. Zermelo's navigation problem for some special surfaces of rotation[J]. AIMS Mathematics, 2023, 8(7): 16278-16290. doi: 10.3934/math.2023833
In this paper, we investigate Zermelo's navigation problem for some special rotation surfaces. In this respect, we find some Randers-type metrics for these rotation surfaces. Furthermore, we get the H-distortion for the metric induced by surfaces.
[1] | H. Es, Affine rotation surfaces of elliptic type in affine 3-space, Therm. Sci., 24 (2020), 399–409. http://dx.doi.org/10.2298/TSCI200405260E doi: 10.2298/TSCI200405260E |
[2] | D. Bao, S. Chern, Z. Shen, An introduction to Riemann-Finsler geometry, New York: Springer-Verlag, 2000. http://dx.doi.org/10.1007/978-1-4612-1268-3 |
[3] | D. Brody, D. Meier, Solution to the quantum Zermelo navigation problem, Phys. Rev. Lett., 114 (2015), 100502. http://dx.doi.org/10.1103/PhysRevLett.114.100502 doi: 10.1103/PhysRevLett.114.100502 |
[4] | P. Kopacz, On generalization of Zermelo navigation problem on Riemannian manifolds, Int. J. Geom. Methods M., 16 (2019), 1950058. http://dx.doi.org/10.1142/S0219887819500580 doi: 10.1142/S0219887819500580 |
[5] | B. Russell, S. Stepney, Zermelo navigation and a speed limit to quantum information processing, Phys. Rev. A, 90 (2014), 012303. http://dx.doi.org/10.1103/PhysRevA.90.012303 doi: 10.1103/PhysRevA.90.012303 |
[6] | B. Russell, S. Stepney, Zermelo navigation in the quantum brachistochrone, J. Phys. A: Math. Theor., 48 (2015), 115303. http://dx.doi.org/10.1088/1751-8113/48/11/115303 doi: 10.1088/1751-8113/48/11/115303 |
[7] | R. Yoshikawa, S. Sabau, Kropina metrics and Zermelo navigation on Riemannian manifolds, Geom. Dedicata, 171 (2014), 119–148. http://dx.doi.org/10.1007/s10711-013-9892-8 doi: 10.1007/s10711-013-9892-8 |
[8] | N. Aldea, P. Kopacz, Generalized Zermelo navigation on Hermitian manifolds under mild wind, Differ. Geom. Appl., 54 (2017), 325–343. http://dx.doi.org/10.1016/j.difgeo.2017.05.007 doi: 10.1016/j.difgeo.2017.05.007 |
[9] | N. Aldea, P. Kopacz, Generalized Zermelo navigation on Hermitian manifolds with a critical wind, Results Math., 72 (2017), 2165–2180. http://dx.doi.org/10.1007/s00025-017-0757-6 doi: 10.1007/s00025-017-0757-6 |
[10] | R. Hama, P. Chitsakul, S. Sabau, The geometry of a Randers rotational surface, Publ. Math. Debrecen, 87 (2015), 473–502. http://dx.doi.org/10.5486/PMD.2015.7395 doi: 10.5486/PMD.2015.7395 |
[11] | G. Gibbons, C. Herdeiro, C. Warnick, M. Werner, Stationary metrics and optical Zermelo-Randers-Finsler geometry, Phys. Rev. D, 79 (2009), 044022. http://dx.doi.org/10.1103/PhysRevD.79.044022 doi: 10.1103/PhysRevD.79.044022 |
[12] | D. Bao, C. Robles, Z. Shen, Zermelo navigation on Riemannian manifolds, J. Differential Geom., 66 (2004), 377–435. http://dx.doi.org/10.4310/jdg/1098137838 doi: 10.4310/jdg/1098137838 |
[13] | A. Böttcher, D. Wenzel, The Frobenius norm and the commutator, Linear Algebra Appl., 429 (2008), 1864–1885. http://dx.doi.org/10.1016/j.laa.2008.05.020 doi: 10.1016/j.laa.2008.05.020 |
[14] | P. Laurian-Ioan, A. Ali, B. Catalin, A. Alkhaldi, The $\chi$-Hessian quotient for Riemannian metrics, Axioms, 10 (2021), 69. http://dx.doi.org/10.3390/axioms10020069 doi: 10.3390/axioms10020069 |
[15] | C. Guo, T. Liu, Q. Wang, B. Qin, A. Wang, A unified strong spectral Tchebychev solution for predicting the free vibration characteristics of cylindrical shells with stepped-thickness and internal-external stiffeners, Thin Wall. Struct., 168 (2021), 108307. http://dx.doi.org/10.1016/j.tws.2021.108307 doi: 10.1016/j.tws.2021.108307 |
[16] | Y. Li, S. Liu, Z. Wang, Tangent developables and Darboux developables of framed curves, Topol. Appl., 301 (2021), 107526. http://dx.doi.org/10.1016/j.topol.2020.107526 doi: 10.1016/j.topol.2020.107526 |
[17] | Y. Li, K. Eren, K. Ayvacı, S. Ersoy, The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Mathematics, 8 (2023), 2226–2239. http://dx.doi.org/10.3934/math.2023115 doi: 10.3934/math.2023115 |
[18] | Y. Li, Z. Chen, S. Nazra, R. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-space, Symmetry, 15 (2023), 277. http://dx.doi.org/10.3390/sym15020277 doi: 10.3390/sym15020277 |
[19] | Y. Li, M. Aldossary, R. Abdel-Baky, Spacelike circular surfaces in Minkowski 3-space, Symmetry, 15 (2023), 173. http://dx.doi.org/10.3390/sym15010173 doi: 10.3390/sym15010173 |
[20] | Y. Li, A. Abdel-Salam, M. Saad, Primitivoids of curves in Minkowski plane, AIMS Mathematics, 8 (2023), 2386–2406. http://dx.doi.org/10.3934/math.2023123 doi: 10.3934/math.2023123 |
[21] | Y. Li, O. Tuncer, On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space, Math. Meth. Appl. Sci., 1 (2023), 1–15. http://dx.doi.org/10.1002/mma.9173 doi: 10.1002/mma.9173 |
[22] | Y. Li, M. Erdoğdu, A. Yavuz, Differential geometric approach of Betchow-Da Rios soliton equation, Hacet. J. Math. Stat., 52 (2023), 114–125. http://dx.doi.org/10.15672/hujms.1052831 doi: 10.15672/hujms.1052831 |
[23] | Y. Li, A. Abolarinwa, A. Alkhaldi, A. Ali, Some inequalities of Hardy type related to Witten-Laplace operator on smooth metric measure spaces, Mathematics, 10 (2022), 4580. http://dx.doi.org/10.3390/math10234580 doi: 10.3390/math10234580 |