Smart agricultural techniques employ current information and communication technologies, leveraging artificial intelligence (AI) for effectually managing the crop. Recognizing rice seedlings, which is crucial for harvest estimation, traditionally depends on human supervision but can be expedited and enhanced via computer vision (CV). Unmanned aerial vehicles (UAVs) equipped with high-resolution cameras bestow a swift and precise option for crop condition surveillance, specifically in cloudy states, giving valuable insights into crop management and breeding programs. Therefore, we improved an enhanced tunicate swarm algorithm with deep learning-based rice seedling classification (ETSADL-RSC). The presented ETSADL-RSC technique examined the UAV images to classify them into two classes: Rice seedlings and arable land. Initially, the quality of the pictures could be enhanced by a contrast limited adaptive histogram equalization (CLAHE) approach. Next, the ETSADL-RSC technique used the neural architectural search network (NASNet) method for the feature extraction process and its hyperparameters could be tuned by the ETSA model. For rice seedling classification, the ETSADL-RSC technique used a sparse autoencoder (SAE) model. The experimental outcome study of the ETSADL-RSC system was verified for the UAV Rice Seedling Classification dataset. Wide simulation analysis of the ETSADL-RSC model stated the greater accuracy performance of 97.79% over other DL classifiers.
Citation: Manal Abdullah Alohali, Fuad Al-Mutiri, Kamal M. Othman, Ayman Yafoz, Raed Alsini, Ahmed S. Salama. An enhanced tunicate swarm algorithm with deep-learning based rice seedling classification for sustainable computing based smart agriculture[J]. AIMS Mathematics, 2024, 9(4): 10185-10207. doi: 10.3934/math.2024498
Smart agricultural techniques employ current information and communication technologies, leveraging artificial intelligence (AI) for effectually managing the crop. Recognizing rice seedlings, which is crucial for harvest estimation, traditionally depends on human supervision but can be expedited and enhanced via computer vision (CV). Unmanned aerial vehicles (UAVs) equipped with high-resolution cameras bestow a swift and precise option for crop condition surveillance, specifically in cloudy states, giving valuable insights into crop management and breeding programs. Therefore, we improved an enhanced tunicate swarm algorithm with deep learning-based rice seedling classification (ETSADL-RSC). The presented ETSADL-RSC technique examined the UAV images to classify them into two classes: Rice seedlings and arable land. Initially, the quality of the pictures could be enhanced by a contrast limited adaptive histogram equalization (CLAHE) approach. Next, the ETSADL-RSC technique used the neural architectural search network (NASNet) method for the feature extraction process and its hyperparameters could be tuned by the ETSA model. For rice seedling classification, the ETSADL-RSC technique used a sparse autoencoder (SAE) model. The experimental outcome study of the ETSADL-RSC system was verified for the UAV Rice Seedling Classification dataset. Wide simulation analysis of the ETSADL-RSC model stated the greater accuracy performance of 97.79% over other DL classifiers.
[1] | M. D. Yang, H. H. Tseng, Y. C. Hsu, C. Y. Yang, M. H. Lai, D. H. Wu, A UAV open dataset of rice paddies for deep learning practice, Remote Sens., 13 (2021), 1358. https://doi.org/10.3390/rs13071358 doi: 10.3390/rs13071358 |
[2] | Q. Yang, L. Shi, J. Han, J. Yu, K. Huang, A near real-time deep learning approach for detecting rice phenology based on UAV images, Agr. Forest Meteorol., 287 (2020), 107938. https://doi.org/10.1016/j.agrformet.2020.107938 doi: 10.1016/j.agrformet.2020.107938 |
[3] | V. Margapuri, N. Penumajji, M. Neilsen, Seed classification using synthetic image datasets generated from low-altitude UAV imagery, In: 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 2021,116–121. https://doi.org/10.1109/ICMLA52953.2021.00026 |
[4] | K. Dilmurat, V. Sagan, M. Maimaitijiang, S. Moose, F. B. Fritschi, Estimating crop seed composition using machine learning from multisensory UAV data, Remote Sens., 14 (2022), 4786. https://doi.org/10.3390/rs14194786 doi: 10.3390/rs14194786 |
[5] | M. M. Anuar, A. A. Halin, T. Perumal, B. Kalantar, Aerial imagery paddy seedlings inspection using deep learning, Remote Sens., 14 (2022), 274. https://doi.org/10.3390/rs14020274 doi: 10.3390/rs14020274 |
[6] | A. O. Conrad, W. Li, D. Y. Lee, G. L. Wang, L. Rodriguez-Saona, P. Bonello, Machine learning-based presymptomatic detection of rice sheath blight using spectral profiles, Plant Phenomics, 2020 (2020), 8954085. https://doi.org/10.34133/2020/8954085 doi: 10.34133/2020/8954085 |
[7] | S. Tan, J. Liu, H. Lu, M. Lan, J. Yu, G. Liao, et al., Machine learning approaches for rice seedling growth stages detection, Front. Plant Sci., 13 (2022), 914771. https://doi.org/10.3389/fpls.2022.914771 doi: 10.3389/fpls.2022.914771 |
[8] | F. Liao, X. Feng, Z. Li, D. Wang, C. Xu, G. Chu, et al., A spatio-temporal convolutional neural network model for rice nutrient level diagnosis at rice panicle initiation stage, http://doi.org/10.2139/ssrn.4272680 |
[9] | F. M. Muharam, K. Nurulhuda, Z. Zulkafli, M. A. Tarmizi, A. N. H. Abdullah, M. F. Che Hashim, et al., UAV-and Random-Forest-AdaBoost (RFA)-based estimation of rice plant traits, Agronomy, 11 (2021), 915. https://doi.org/10.3390/agronomy11050915 doi: 10.3390/agronomy11050915 |
[10] | T. Yamaguchi, Y. Tanaka, Y. Imachi, M. Yamashita, K. Katsura, Feasibility of combining deep learning and RGB images obtained by unmanned aerial vehicle for leaf area index estimation in rice, Remote Sens., 13 (2021), 84. https://doi.org/10.3390/rs13010084 doi: 10.3390/rs13010084 |
[11] | H. H. Tseng, M. D. Yang, R. Saminathan, Y. C. Hsu, C. Y. Yang, D. H. Wu, Rice seedling detection in UAV images using transfer learning and machine learning, Remote Sens., 14 (2022), 2837. https://doi.org/10.3390/rs14122837 doi: 10.3390/rs14122837 |
[12] | T. Liu, R. Li, X. Zhong, M. Jiang, X. Jin, P. Zhou, et al., Estimates of rice lodging using indices derived from UAV visible and thermal infrared images, Agr. Forest Meteorol., 252 (2018), 144–154. https://doi.org/10.1016/j.agrformet.2018.01.021 doi: 10.1016/j.agrformet.2018.01.021 |
[13] | X. Ma, X. Deng, L. Qi, Y. Jiang, H. Li, Y. Wang, et al., Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields, PloS One, 14 (2019), e0215676. https://doi.org/10.1371/journal.pone.0215676 doi: 10.1371/journal.pone.0215676 |
[14] | H. Liu, Y. Qi, W. Xiao, H. Tian, D. Zhao, K. Zhang, et al., Identification of male and female parents for hybrid rice seed production using UAV-based multispectral imagery, Agriculture, 12 (2022), 1005. https://doi.org/10.3390/agriculture12071005 doi: 10.3390/agriculture12071005 |
[15] | S. V. Desai, V. N. Balasubramanian, T. Fukatsu, S. Ninomiya, W. Guo, Automatic estimation of heading date of paddy rice using deep learning, Plant Methods, 15 (2019), 76. https://doi.org/10.1186/s13007-019-0457-1 doi: 10.1186/s13007-019-0457-1 |
[16] | J. Wu, G. Yang, X. Yang, B. Xu, L. Han, Y. Zhu, Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network, Remote Sens., 11 (2019), 691. https://doi.org/10.3390/rs11060691 doi: 10.3390/rs11060691 |
[17] | H. Ge, F. Ma, Z. Li, Z. Tan, C. Du, Improved accuracy of phenological detection in rice breeding by using ensemble models of machine learning based on UAV-RGB imagery, Remote Sens., 13 (2021), 2678. https://doi.org/10.3390/rs13142678 doi: 10.3390/rs13142678 |
[18] | G. Latif, S. E. Abdelhamid, R. E. Mallouhy, J. Alghazo, Z. A. Kazimi, Deep learning utilization in agriculture: Detection of rice plant diseases using an improved CNN model, Plants, 11 (2022), 2230. https://doi.org/10.3390/plants11172230 doi: 10.3390/plants11172230 |
[19] | N. Krishnamoorthy, L. V. N. Prasad, C. S. P. Kumar, B. Subedi, H. B. Abraha, V. E. Sathishkumar, Rice leaf diseases prediction using deep neural networks with transfer learning, Environm. Res., 198 (2021), 111275. https://doi.org/10.1016/j.envres.2021.111275 doi: 10.1016/j.envres.2021.111275 |
[20] | B. S. Reddy, A. K. Maurya, V. E. Sathishkumar, P. L. Narayana, M. H. Reddy, A. Baazeem, et al., Prediction of batch sorption of barium and strontium from saline water, Environ. Res., 197 (2021), 111107. https://doi.org/10.1016/j.envres.2021.111107 doi: 10.1016/j.envres.2021.111107 |
[21] | M. C. Michelini, A. Gazquez, M. L. Checovich, A. S. Tamayo, S. J. Maiale, A. B. Menéndez, et al., Determination of low‐temperature stress during the vegetative stage as a tool to predict plant yield in rice genotypes with contrasting tolerance levels, J. Agron. Crop Sci., 210 (2024), e12670. https://doi.org/10.1111/jac.12670 doi: 10.1111/jac.12670 |
[22] | P. I. Ritharson, K. Raimond, X. A. Mary, J. E. Robert, J. Andrew, DeepRice: A deep learning and deep feature based classification of Rice leaf disease subtypes, Artif. Intell. Agric., 11 (2024), 34–49. https://doi.org/10.1016/j.aiia.2023.11.001 doi: 10.1016/j.aiia.2023.11.001 |
[23] | N. M. U. Din, A. Assad, R. A. Dar, M. Rasool, S. U. Sabha, T. Majeed, et al., RiceNet: A deep convolutional neural network approach for classification of rice varieties, Expert Syst. Appl., 235 (2024), 121214. https://doi.org/10.1016/j.eswa.2023.121214 doi: 10.1016/j.eswa.2023.121214 |
[24] | G. Çınarer, N. Erbaş, A. Ö cal, Rice classification and quality detection success with artificial intelligence technologies, Braz. Arch. Biol. Technol., 67 (2024), e24220754. https://doi.org/10.1590/1678-4324-2024220754 doi: 10.1590/1678-4324-2024220754 |
[25] | P. Kulkarni, S. Shastri. Rice leaf diseases detection using machine learning, J. Sci. Res. Technol., 2 (2024), 17–22. https://doi.org/10.61808/jsrt81 doi: 10.61808/jsrt81 |
[26] | H. M. Qassim, N. M. Basheer, M. N. Farhan, Brightness preserving enhancement for dental digital X-ray images based on entropy and histogram analysis, J. Appl. Sci. Eng., 22 (2019), 187–194. https://doi.org/10.6180/jase.201903_22(1).0019 doi: 10.6180/jase.201903_22(1).0019 |
[27] | S. Nalluri, R. Sasikala, A deep neural architecture for SOTA pneumonia detection from chest X-rays, Int. J. Syst. Assur. Eng. Manag., 15 (2024), 489–502. https://doi.org/10.1007/s13198-022-01788-x doi: 10.1007/s13198-022-01788-x |
[28] | Y. Zhang, Q. He, L. Yang, C. Liu, An improved tunicate swarm algorithm for solving the multiObjective optimisation problem of airport gate assignments, Appl. Sci., 12 (2022), 8203. https://doi.org/10.3390/app12168203 doi: 10.3390/app12168203 |
[29] | T. Fetouh, A. M. Elsayed, Optimal control and operation of fully automated distribution networks using improved tunicate swarm intelligent algorithm, IEEE Access, 8 (2020), 129689–129708. https://doi.org/10.1109/ACCESS.2020.3009113 doi: 10.1109/ACCESS.2020.3009113 |
[30] | B. Yan, G. Han, Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system, IEEE Access, 6 (2018), 41238–41248. https://doi.org/10.1109/ACCESS.2018.2858277 doi: 10.1109/ACCESS.2018.2858277 |
[31] | Rice Seedling Dataset, Available from: https://github.com/aipal-chu/RiceSeedlingDataset. |