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1. Introduction

It is ideal to represent phenomena and real-world problems in numerous applied sciences using
delay differential equations (DDEs), a type of functional differential equation, that is characterized by
taking into account the temporal memory of events. In both pure and applied mathematics, physics,
meteorology, engineering, and population dynamics, there are many applications for the study of
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functional differential equations. The properties of these equations of different orders are a topic that
is addressed by all of these sciences. For global existence and uniqueness theorems for differential
equations, pure mathematics focuses on the existence and uniqueness of solutions. Applied
mathematics, however, places a greater emphasis on the careful justification of the qualitative
behavior of solutions (oscillation, periodicity, stability, global attractivity, Hopf bifurcation, control,
synchronization, etc.) see [2–5].

Finding sufficient conditions to assure that all solutions of DDE oscillate is one of the main aims of
oscillation theory. Ladde et al. [6] were among the first to outline oscillation theory, covered the work
up until 1984. The focus of this book is on how divergent arguments affect the oscillation of solutions.
The book by Gyori and Ladas [7], which made significant contributions to the development of
linearized oscillation theory and the relationship between the distribution of the roots of characteristic
equations and the oscillation of all solutions, is one of the key works in the field of oscillation theory.

The deflection of buckling beams with constant or changing cross-sections, electromagnetic waves,
three-layer beams, gravity-driven flows, etc., are only a few examples of the many disciplines of applied
mathematics and physics from which the fourth-order differential equations are formed. Due to its
widespread use in the study of physical sciences, mechanics, radio technology, lossless high-speed
computer networks, control systems, life sciences, and population growth, the oscillation theory of
fourth-order differential equations has recently attracted a lot of attention, see [8–10].

In recent years, oscillation theory has received significant attention from researchers who have
conducted various studies to understand the oscillation behavior of functional differential equations of
different orders. This area of research continues to be active, with new findings emerging frequently.
Specifically, when investigating the oscillatory behavior of functional differential equations, the
second-order equations received the most attention from researchers [11–19], followed by the
third-order equations [20, 21], whereas the fourth-order and higher-order differential equations
received comparatively less attention [22, 23]. Investigation of the oscillatory behavior of solutions of
the fourth-order quasi-linear DDE(

a (t)
(
u′′′ (t)

)α)′
+ q (t) uα (σ (t)) = 0, t ≥ t0, (1.1)

is the main topic of this paper, where we assume the following constraints during the study:

(H1) α > 0 is a ratio of two odd integers, a ∈ C1 ([t0,∞) , (0,∞)) , q ∈ C ([t0,∞) , [0,∞)) , and a′ (t) ≥ 0.
(H2) σ ∈ C1 ([t0,∞) ,R) , σ(t) ≤ t, σ′(t) > 0, and limt→∞ σ (t) = ∞.

A function u ∈ C3([t∗,∞) ,R), t∗ ⩾ t0, is said to be a solution of (1.1) if it has the property a(u′′′)α ∈
C1 ([t∗,∞) ,R), and satisfies equation (1.1) for t ≥ t∗. We consider only those solutions u of (1.1) which
satisfy sup{|u(t)| : t ⩾ t1} > 0, for all t1 ≥ t∗. A solution of (1.1) is called oscillatory if it is neither
eventually positive nor eventually negative. Otherwise, it is said to be nonoscillatory. Equation (1.1) is
said to be oscillatory if all of its solutions are oscillatory.

In the next part of the introduction, we review some important results that dealt with the oscillation
of DDEs of even orders.

Agarwal et al. [24] established criteria for oscillation of the nth-order DDE(∣∣∣u(n−1) (t)
∣∣∣α−1

u(n−1) (t)
)′
+ F (t, u (σ (t))) = 0, (1.2)

where t ≥ t0, n is even, F ∈ C ([t0,∞) × R,R) , and sgn F (t, u) = sgn u.
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Theorem 1.1. [24, Corollary 2.1] If there exist ρ, µ ∈ C1 ([t0,∞) ,R+) such that

µ (t) ≤ inf {t, σ (t)} , lim
t→∞
µ (t) = ∞, µ′ (t) > 0

and

lim sup
t→∞

∫ t

t0

(
ρ (s) q (s) −

1
(α + 1)α+1

(ρ′ (s))α+1

(ρ (s) µ′ (s))α

)
ds = ∞,

then the DDE (
|u′ (t)|α−1 u′ (t)

)′
+ q (t) |u (σ (t))|α−1 u (σ (t)) = 0,

is oscillatory.

Theorem 1.2. [24, Theoerem 2.3] If F (t, u) sgn u ≥ q (t) |u|α for u , 0 and α > 0, and

lim sup
t→∞

tα(n−1)
∫ ∞

γ(t)
q (s) ds > ((n − 1)!)α ,

then (1.2) is oscillatory, where γ (t) := sup {s ≥ t0 : σ (s) ≤ t}.

In both canonical ∫ ∞

t0
a−1/α (s) ds = ∞, (1.3)

and non-canonical cases, Baculıkova et al. [25] studied the asymptotic and oscillatory properties of the
nth-order DDE (

a (t)
(
u(n−1) (t)

)α)′
+ q (t) f (u (σ (t))) = 0, (1.4)

where u f (u) > 0 for u , 0, f (u) is nondecreasing, and

− f (−xy) ≥ f (xy) ≥ f (x) f (y) , for xy > 0.

Theorem 1.3. [25, Corollary 1] Assume that (1.3) holds, f
(
u1/α

)
/u ≥ 1 for 0 < |u| ≤ 1, and for some

δ ∈ (0, 1) ,

lim inf
t→∞

∫ t

σ(t)
q (s) f

(
δ

(n − 1)!
σn−1 (s)

r1/α (σ (s))

)
ds >

1
e
.

Then, (1.4) is oscillatory.

Koplatadze et al. [1] established sufficient conditions for the DDE

u(n) (t) + q (t) u (σ (t)) = 0, n ≥ 2,

to have Properties A and B, and considered the odd and even cases for the order.
For neutral equations, Li and Rogovchenko [26] investigated the oscillatory behavior of the neutral

DDE
(u (t) + p (t) u (τ (t)))(n) + q (t) u (σ (t)) = 0, n ≥ 4. (1.5)

They derived two oscillation results which complement and improve the results in [27–29]. Baculikova
and Dzurina [30] introduced comparison theorems for the oscillation of (1.5).
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For second-order, recently, Baculikova [31] and Baculikova and Dzurina [32] extended the results
in [1] to the non-canonical case of the DDE(

a (t) u′ (t)
)′
+ q (t) f (u (σ (t))) = 0,

and the canonical case of the DDE(
a (t) u′ (t)

)α
+ q (t) uα (σ (t)) = 0.

In this paper, in the canonical case, we begin by finding some monotonic and asymptotic properties
of a class of positive solutions to the DDE (1.1). Then, as an extension of the results in [1], we deduce
a new condition that excludes positive solutions in the class under study. Moreover, we introduce a
criterion that guarantees the oscillation of all solutions of the studied equation.

2. Preliminary results

We begin with some useful lemmas concerning the monotonic properties of the nonoscillatory
solutions of the studied equations. To simplify the presentation of the main results, we define the
following functions: ρ′+ (t) := max {0, ρ′ (t)} ,

η0 (t) :=
∫ t

t0

1
a1/α (s)

ds, ηi (t) :=
∫ t

t0
ηi−1 (s) ds, i = 1, 2,

and

q̂ (t) :=
{
ηα2 (σ (t))η−1

0 (σ (t))q (t) , for α ≥ 1;
ηα2 (σ (t))η−1

0 (t) q(t), for α < 1.

Lemma 2.1. [33, Lemma 2.2.3] Let w ∈ Cn ([t0,∞), (0,∞)), w(n) be of fixed sign and not identically
zero on [t0,∞) and assume that there exists t1 ≥ t0 such that w(n−1) (t) w(n) (t) ≤ 0 for all t1 ≥ t0. If
limt→∞ w (t) , 0, then there exists tµ ∈ [t1,∞) such that

w (t) ≥
µ

(m − 1)!
tn−1

∣∣∣w(n−1) (t)
∣∣∣ ,

for every µ ∈ (0, 1) and t ≥ tµ.

Lemma 2.2. [34] Let w ∈ Cm ([t0,∞), (0,∞)), w(i) (t) > 0 for i = 1, 2, ...,m, and
w(m+1) (t) ≤ 0, eventually. Then, eventually, w (t) /w′ (t) ≥ ϵt/m for every ϵ ∈ (0, 1).

Lemma 2.3. [35] Let A > 0 and B be real numbers. Then

Bϕ − Aϕ(α+1)/α ≤
αα

(α + 1)α+1

Bα+1

Aα
. (2.1)

Lemma 2.4. Assume that u is an eventually positive solution of (1.1). Then u satisfies one of the
following cases, eventually:

(P1) : u > 0, u′ > 0, u′′ > 0, u′′′ > 0,
(
a
(
u′′′

)α)′ < 0,
(P2) : u > 0, u′ > 0, u′′ < 0, u′′′ > 0,

(
a
(
u′′′

)α)′ < 0.
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Notation 1. The class of all eventually positive solutions satisfying case (P1) or (P2), in Lemma 2.4, is
denoted by Na or Nb, respectively.

Lemma 2.5. Assume that u ∈ Na. If ∫ ∞

t0
ηα2 (σ (s)) q (s) ds = ∞, (2.2)

then(
B1,1

)
u ⩾ a1/αu′′′η2;(

B1,2
)

u′′/η0 and u/η2 are decreasing;(
B1,3

)
u ⩾ u′′η2/η0;(

B1,4
)

limt→∞ u(t)/η2(t) = 0;(
B1,5

)
limt→∞ u′′(t)/η0(t) = 0.

Proof.
(
B1,1

)
The monotonicity of a1/αu′′′ implies that

u′′ (t) ≥
∫ t

t1
a1/α(s)u′′′ (s)

1
a1/α(s)

ds ≥ a1/α(t)u′′′ (t)
∫ t

t1

1
a1/α(s)

ds

≥ a1/α(t)u′′′ (t) η0 (t) . (2.3)

Integrating twice more from t1 to t, we obtain

u′ ≥ a1/αu′′′η1,

and
u ≥ a1/αu′′′η2.(

B1,2
)

From (2.3), we obtain (
u′′

η0

)′
=

a1/αu′′′η0 − u′′

a1/αη2
0

≤ 0.

Since u′′/η0is decreasing, then

u′ (t) ≥
∫ t

t1

u′′(s)
η0(s)

η0 (s) ds ≥
u′′ (t)
η0 (t)

η1 (t) . (2.4)

From this we deduce that (
u′

η1

)′
=

u′′η1 − η0u′

η2
1

≤ 0.

Since u′/η1 is decreasing, then

u (t) ≥
∫ t

t1

u′(s)
η1(s)

η1 (s) ds ≥
u′(t)
η1(t)
η2(t). (2.5)

Consequently (
u
η2

)′
=

u′η2 − η1u
η2

2

≤ 0.
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B1,3

)
From (2.4) and (2.5), we find

u ≥
η2

η0
u′′.(

B1,4
)

Since u/η2 is positive and decreasing, limt→∞ u (t) /η2(t) = l1 ⩾ 0. We claim that l1 = 0. If not,
then u (t) /η2(t) ⩾ l1 > 0 eventually. Integrating (1.1) from t1 to t, we have

a(t1)
(
u′′′(t1)

)α
≥

∫ t

t1
q(s)uα(σ(s))ds

≥

∫ t

t1
q(s)ηα2 (σ (s))

uα(σ(s))
ηα2 (σ (s))

ds

≥ lα1

∫ t

t1
q(s)ηα2 (σ (s))ds→ ∞ as t → ∞,

which contradicts (2.2). So that, l1 = 0.(
B1,5

)
Since u′′/η0 is positive and decreasing, limt→∞ u′′ (t) /η0(t) = l2 ⩾ 0.We claim that l2 = 0. If not,

then u′′ (t) /η0(t) ⩾ l2 > 0 eventually. Integrating (1.1) from t1 to t, we have

a(t1)
(
u′′′(t1)

)α
≥

∫ t

t1
q(s)uα(σ(s))ds.

From (2.4) and (2.5), we get

u ≥
u′′

η0
η2.

Therefore,

a(t1)
(
u′′′(t1)

)α
≥

∫ t

t1
q(s)ηα2 (σ (s))

(u′′(σ(s)))α

ηα0 (σ (s))
ds

≥ lα2

∫ t

t1
q(s)ηα2 (σ (s))ds→ ∞ as t → ∞,

which contradicts (2.2). So that l2 = 0. Hence, the proof of the lemma is complete. □

Since η0 is increasing, there exists λ ≥ 1 such that

η0 (t)
η0 (σ (t))

≥ λ. (2.6)

Lemma 2.6. Assume that u ∈ Na, and there exists a δ > 0 such that

1
α

a1/α (t) ηα2 (σ (t))η0(t)q (t) ≥ δ. (2.7)

Then
(B2,1) u′′/η1−δ

0 is decreasing;
(B2,2) u′′/ηδ00 is increasing, where δ0 = δ

1/αλδ.
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Proof. Assume that u ∈ Na. It follows from (2.7) that∫ t

t0
ηα2 (σ (s)) q (s) ds ≥ αδ

∫ t

t0

1
a1/α (s) η0(s)

ds

= αδ ln
η0 (t)
η0 (t0)

→ ∞ as t → ∞.

So (2.7) guarantees condition (2.2).(
B2,1

)
Note that (B1,5) in Lemma 2.5 implies

lim
t→∞

a1/α (t) u′′′ (t) = 0. (2.8)

By integrating (1.1) from t to∞, we conclude that

a1/α (t) u′′′ (t) =
(∫ ∞

t
q(s)uα (σ (s)) ds

)1/α

. (2.9)

We have (
a
(
u′′′

)α)′
= α

(
a1/αu′′′

)′ (
a1/αu′′′

)α−1
.

Putting into (1.1), we obtain(
a1/α (t) u′′′ (t)

)′
+

1
α

(
a1/α(t)u′′′(t)

)1−α
q(t)uα (σ (t)) = 0. (2.10)

Then, ϕ = a1/αu′′′ is a positive decreasing function and satisfies

ϕ′ (t) +
1
α

q(t)ϕ1−α (t) uα (σ (t)) = 0. (2.11)

On the other hand, (B1,1) in Lemma 2.5 implies

u ≥ a1/αu′′′η2 = ϕη2,

and so
uα (σ(t)) ≥ ϕα (σ(t)) ηα2 (σ(t)) ≥ ϕα (t) ηα2 (σ(t)) .

Substituting the previous inequality into (2.11), we have

ϕ′ (t) +
1
α

q(t)ηα2 (σ(t)) ϕ (t) ≤ 0. (2.12)

By using (2.7), we obtain

ϕ′ +
δ

a1/αη0
ϕ ≤ 0,

which implies

−ϕ′η0 ≥ δ
ϕ

a1/α = δu
′′′.

We present the auxiliary function

y = (1 − δ) u′′ − a1/αη0u′′′. (2.13)
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Differentiating y, we get
y′ = −δu′′′ − ϕ′η0 ≥ −δu′′′ + δu′′′ = 0.

Therefore, the function y is increasing and has constant sign, eventually. If y (t) ≤ 0 for t ≥ t1, then this
implies that u′′/η1−δ

0 is increasing. Using this fact together with (2.7) and (2.9), we have

a1/α (t) u′′′ (t) ≥
(∫ ∞

t
q(s)uα(σ(s))ds

)1/α

≥

(∫ ∞

t

αδ

a1/α (s) η0 (s)
uα (σ (s))
ηα2 (σ (s))

ds
)1/α

.

Since u/η2 is decreasing, then

a1/α (t) u′′′ (t) ≥
(∫ ∞

t

αδ

a1/α (s) η0 (s)
uα (s)
ηα2 (s)

ds
)1/α

. (2.14)

From (B1,3) in Lemma 2.5, we find

a1/α (t) u′′′ (t) ≥
(∫ ∞

t

αδ

a1/α (s) ηα+1
0 (s)

(
u′′ (s)

)α ds
)1/α

.

Since u′′/η1−δ
0 is increasing, then

a1/α (t) u′′′ (t) ≥
(∫ ∞

t

αδ

a1/α (s)
1

ηαδ+1
0 (s)

(
u′′ (s)
η1−δ

0 (s)

)α
ds

)1/α

≥
u′′ (t)
η1−δ

0 (t)

(∫ ∞

t

αδ

a1/α (s)
1

ηαδ+1
0 (s)

ds
)1/α

≥
u′′(t)
η0 (t)

.

It follows from the last inequality that (u′′/η0)′ ≥ 0. This is a contradiction and we deduce that

y = (1 − δ) u′′ − a1/αη0 (t) u′′′ ≥ 0,

which implies that (
u′′

η1−δ
0

)′
=

a1/αη0u′′′ − (1 − δ) u′′

a1/αη2−δ
0

≤ 0.

(
B2,2

)
From (2.7) and (2.9), we have

a1/α (t) u′′′ (t) ≥
(∫ ∞

t
q(s)uα(σ(s))ds

)1/α

≥

(∫ ∞

t

αδ

a1/α (s) η0 (s)
uα (σ (s))
ηα2 (σ (s))

ds
)1/α

.
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From (B1,3) in Lemma 2.5, we get

a1/α (t) u′′′ (t) ≥
(∫ ∞

t

αδ

a1/α (s) η0 (s)
(u′′ (σ (s)))α

ηα0 (σ (s))
ds

)1/α

≥

(∫ ∞

t

αδ

a1/α (s) η0 (s)
1

ηαδ0 (σ (s))

(
u′′ (σ (s))
η1−δ

0 (σ (s))

)α
ds

)1/α

.

Since u′′/η1−δ
0 is decreasing, then

a1/α (t) u′′′ (t) ≥

∫ ∞

t

αδ

a1/α (s) η0 (s)
1

ηαδ0 (σ (s))
(u′′ (s))α

ηα(1−δ)
0 (s)

ds

1/α

.

Since u′′ is increasing, then

a1/α (t) u′′′ (t) ≥ u′′(t)
(∫ ∞

t

αδ

a1/α (s) η1+α
0 (s)

ηαδ0 (s)

ηαδ0 (σ (s))
ds

)1/α

.

Using (2.6), we obtain

a1/α (t) u′′′ (t) ≥ u
′′

(t)
(∫ ∞

t

αδ

a1/α (s) η1+α
0 (s)

λαδds
)1/α

≥ δ1/αλδu
′′

(t)
(∫ ∞

t

α

a1/α (s) η1+α
0 (s)

λαδds
)1/α

≥ δ1/αλδ
u′′(t)
η0 (t)

.

Then
a1/αu′′′ ≥ δ0

u′′

η0
,

or equivalently
a1/αu′′′η0 − δ0u′′ ≥ 0. (2.15)

From the last inequality, we deduce that u′′

ηδ00

′ = a1/αu′′′η0 − δ0u′′

a1/αη1+δ0
0

≥ 0,

which means that u′′/ηδ00 is increasing. Thus, the proof is complete. □

Lemma 2.7. Assume that u ∈ Na, and (2.6) and (2.7) hold for some λ ≥ 1 and δ ∈ (0, 1). Then, the
DDE (

a1/α (t) z′ (t)
)′
+ κq̂(t)z (σ (t)) = 0, (2.16)

has a positive solution, where

κ :=
{ 1
α

(1 − δ)1−α λδ(α−1) for α ≥ 1;
1
α
δ

1−α
α λ (1 − δ0)

α−1
α for α < 1.
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Proof. Assume that u ∈ Na. We have(
a
(
u′′′

)α)′
= α

(
a1/αu′′′

)′ (
a1/αu′′′

)α−1
.

Using this relation in (1.1), we get(
a1/α (t) u′′′ (t)

)′
+

1
α

(
a1/α (t) u′′′(t)

)1−α
q(t)uα(σ(s)) = 0.

From (B1,3) in Lemma 2.5, we have

(
a1/α (t) u′′′ (t)

)′
+

1
α

(
a1/α(t)u′′′(t)

)1−α
q (t)
ηα2 (σ (t))
ηα0 (σ (t))

(
u′′ (σ (t))

)α
≤ 0. (2.17)

Since u′′/η1−δ
0 is decreasing, then

u′′ ≥
a1/αu′′′

1 − δ
η0. (2.18)

For α ≥ 1, we get (
a1/αu′′′

)1−α
≥

(u′′)1−α

η1−α
0

(1 − δ)1−α . (2.19)

Since u′′/η1−δ
0 is decreasing, we find

u′′ (t) ≤
u′′ (σ (t))
η1−δ

0 (σ (t))
η1−δ

0 (t).

Hence (
u′′ (t)

)1−α
≥

(u′′ (σ (t)))1−α(
η1−δ

0 (σ (t))
)1−α

(
η1−δ

0 (t)
)1−α
. (2.20)

Substituting (2.20) into (2.19), we arrive at

(
a1/α (t) u′′′ (t)

)1−α
≥

(1 − δ)1−α ηδ(α−1)
0 (t)(

η1−δ
0 (σ (t))

)1−α

(
u′′ (σ (t))

)1−α .

From (2.6), we obtain

(
a1/α (t) u′′′ (t)

)1−α
≥

(1 − δ)1−α λδ(α−1)

η1−α
0 (σ (t))

(
u′′ (σ (t))

)1−α . (2.21)

Combining (2.17) and (2.21), we have

(
a1/α (t) u′′′ (t)

)′
+

(1 − δ)1−α λδ(α−1)

α

ηα2 (σ (t))
η0(σ (t))

q (t) u′′ (σ (t)) ≤ 0,

or equivalently (
a1/α (t) u′′′ (t)

)′
+ κ1q̂(t)u′′ (σ (t)) ≤ 0.
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Letting z := u′′, we get that z satisfies the linear differential inequality(
a1/α (t) z′ (t)

)′
+ κ1q̂(t)z (σ (t)) ≤ 0.

Corollary 1 in [36] ensures that the corresponding DDE (2.16) has a positive solution.
For α < 1, from (2.9), we get(

a1/α (t) u′′′ (t)
)′
+

1
α

(∫ ∞

t
q(s)uα (σ (s)) ds

) 1−α
α

q(t)uα (σ (t)) = 0.

From (B1,3) in Lemma 2.5, we obtain(
a1/α (t) u′′′ (t)

)′
+

1
α

(∫ ∞

t
q(s)
ηα2 (σ (s))
ηα0 (σ (s))

(
u′′ (σ (s))

)α ds
) 1−α
α

q(t)
ηα2 (σ (t))
ηα0 (σ (t))

(
u′′ (σ (t))

)α
≤ 0.

Since u′′/ηδ00 is increasing, we arrive at(
a1/α (t) u′′′ (t)

)′
+

1
α

 u′′ (σ (t))

ηδ00 (σ (t))

1−α

×

(∫ ∞

t
q(s)
ηα2 (σ (s))
ηα0 (σ (s))

ηαδ00 (σ (s)) ds
) 1−α
α

q(t)
ηα2 (σ (t))
ηα0 (σ (t))

(
u′′ (σ (t))

)α
≤ 0 .

Therefore,(
a1/α (t) u′′′ (t)

)′
+

1
α

q(t)

ηδ0(1−α)
0 (σ (t))

ηα2 (σ (t))
ηα0 (σ (t))

∫ ∞

t
q(s)

ηα2 (σ (s))

ηα(1−δ0)
0 (σ (s))

ds


1−α
α

u′′ (σ (t)) ≤ 0. (2.22)

Using (2.6) and (2.7), we have∫ ∞

t
q(s)

ηα2 (σ (s))

ηα(1−δ0)
0 (σ (s))

ds ≥
∫ ∞

t
αδ

1

a1/α (s) η0 (s) ηα(1−δ0)
0 (σ (s))

ds

≥

∫ ∞

t
αδ
ηα(1−δ0)

0 (s)

ηα(1−δ0)
0 (σ (s))

1

ηα(1−δ0)
0 (s)

1
a1/α (s) η0 (s)

ds

≥ αδλα(1−δ0)
∫ ∞

t

ηα(δ0−1)−1
0 (s)
a1/α (s)

ds

=
δλα(1−δ0)

1 − δ0
ηα(δ0−1)

0 (t) .

From (2.22), we obtain(
a1/α (t) u′′′ (t)

)′
+

1
α

δ
1−α
α λ(1−α)(1−δ0)

(1 − δ0)
1−α
α

q(t)
ηα2 (σ (t))
ηα0 (σ (t))

η(δ0−1)(1−α)
0 (t)

ηδ0(1−α)
0 (σ (t))

u′′ (σ (t)) ≤ 0,

which in view of (2.6) yields(
a1/α (t) u′′′ (t)

)′
+

1
α

δ
1−α
α λ

(1 − δ0)
1−α
α

ηα2 (σ (t))
η0 (t)

q(t)u′′ (σ (t)) ≤ 0,

or equivalently (
a1/α (t) u′′′ (t)

)′
+ κ2q̂(t)u′′ (σ (t)) ≤ 0.

As in the case of α ≥ 1, we can complete the proof of this case. The proof of the lemma is complete. □
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3. Oscillatory criteria

Theorem 3.1. Assume that (2.6) and (2.7) hold for some λ ≥ 1 and δ ∈ (0, 1). If

lim sup
t→∞

{
ηδ−1

0 (σ (t))
∫ σ(t)

t1

η0 (s)
ηδ−1

0 (σ (s))
q̂ (s) ds

+ ηδ0 (σ (t))
∫ t

σ(t)

q̂ (s)
ηδ−1

0 (σ (s))
ds + η1−δ0

0 (σ (t))
∫ ∞

t
ηδ00 (σ (s)) q̂ (s) ds

}
>

1
κ
, (3.1)

and there is a ρ ∈ C ([t0,∞) , (0,∞)) such that

lim sup
t→∞

∫ t

t1

ρ (s)
∫ ∞

s

 1
a (ϱ)

∫ ∞

ϱ

q (v)
(
σ (v)

v

)α/ϵ
dv

1/α

dϱ −
(
ρ′+ (s)

)2

4ρ (s)

 ds = ∞, (3.2)

for some ϵ ∈ (0, 1), then (1.1) is oscillatory.

Proof. Assume the contrary that u is an eventually positive solution of (1.1). From Lemma 2.4, u ∈ Na

or u ∈ Nb.
Assume first that u ∈ Na. It follows from Lemma 2.7, Eq (2.16) has a positive solution. An

integration of (2.16) from t to∞ yields

z′ (t) ≥
κ1

a1/α (t)

∫ ∞

t
q̂ (s) z (σ (s)) ds.

Integrating once more from t1 to t, we obtain

z (t) ≥ κ
∫ t

t1

1
a1/α (ϱ)

∫ ∞

ϱ

q̂ (s) z (σ (s)) dsdϱ

= κ

∫ t

t1

1
a1/α (ϱ)

(∫ t

ϱ

q̂ (s) z (σ (s)) dsdϱ +
∫ ∞

t
q̂ (s) z (σ (s)) dsdϱ

)
.

Thus, we get

z (t) ≥ κ
∫ t

t1
η0 (s) q̂ (s) z (σ (s)) ds + κη0 (t)

∫ ∞

t
q̂ (s) z (σ (s)) ds.

Hence,

z (σ (t)) ≥ κ
∫ σ(t)

t1
η0 (s) q̂ (s) z (σ (s)) ds + κη0 (σ (t))

∫ ∞

σ(t)
q̂ (s) z (σ (s)) ds

≥ κ

∫ σ(t)

t1
η0 (s) q̂ (s) z (σ (s)) ds + κη0 (σ (t))

∫ t

σ(t)
q̂ (s) z (σ (s)) ds

+κη0 (σ (t))
∫ ∞

t
q̂ (s) z (σ (s)) ds.

Using the facts that z/η1−δ
0 is decreasing and z/ηδ00 is increasing, we arrive at

1
κ
≥

1
η1−δ

0 (σ (t))

∫ σ(t)

t1

η0 (s)
ηδ−1

0 (σ (s))
q̂ (s) ds + ηδ0 (σ (t))

∫ t

σ(t)
η1−δ

0 (σ (s)) q̂ (s) ds
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16303

+
1

ηδ0−1
0 (σ (t))

∫ ∞

t
ηδ00 (σ (s)) q̂ (s) zds.

This is a contradiction.
Assume now that u ∈ Nb. Integrating (1.1) from t to ∞ and using the fact that (a (u′′′)α)′ ≤ 0, we

obtain
−a (t)

(
u′′′ (t)

)α
= −

∫ ∞

t
q (s) uα (σ (s)) ds. (3.3)

Using Lemma 2.2, we find u ≥ ϵtu′ for all ϵ ∈ (0, 1). Integrating this inequality from σ to t, we get

u (σ (t))
u (t)

≥

(
σ (t)

t

)1/ϵ

.

Therefore, (3.3) becomes

a (t)
(
u′′′ (t)

)α
≥

∫ ∞

t
q (s)

(
σ (s)

s

)α/ϵ
u (s) ds.

Since u′ (t) > 0, then

a (t)
(
u′′′ (t)

)α
≥ uα (t)

∫ ∞

t
q (s)

(
σ (s)

s

)α/ϵ
u (s) ds,

or equivalently

u′′′ (t) ≥ u (t)
 1

a (t)

∫ ∞

t
q (s)

(
σ (s)

s

)α/ϵ
u (s) ds

1/α

.

Integrating this inequality from t to∞, we have

u′′ (t) ≤ −u (t)
∫ ∞

t

 1
a (ϱ)

∫ ∞

ϱ

q (s)
(
σ (s)

s

)α/ϵ
u (s) ds

1/α

dϱ. (3.4)

Now, define

w := ρ
u′

u
.

Then, w (t) ≥ 0 for t ≥ t1 ≥ t0 and

w′ = ρ′
u′

u
+ ρ

u′′

u
− ρ

(u′)2

u2

= ρ
u′′

u
+
ρ′

ρ
w −

1
ρ

w2.

Hence, by (3.4), we get

w′ (t) ≤ −ρ (t)
∫ ∞

t

 1
a (ϱ)

∫ ∞

ϱ

q (s)
(
σ (s)

s

)α/ϵ
ds

1/α

dϱ +
ρ′+ (t)
ρ (t)

w (t) −
1
ρ (t)

w2 (t) . (3.5)

Using Lemma 2.3 with B = ρ′+/ρ, and A = 1/ρ, we obtain

ρ′+
ρ

w −
1
ρ

w2 ≤

(
ρ′+

)2

4ρ
.
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Consequently, (3.5) leads to

w′ (t) ≤ −ρ (t)
∫ ∞

t

 1
a (ϱ)

∫ ∞

ϱ

q (s)
(
σ (s)

s

)α/ϵ
ds

1/α

dϱ +
(
ρ′+ (t)

)2

4ρ (t)
.

Integrating this inequality from t1 to t, we have∫ t

t1

ρ (s)
∫ ∞

s

 1
a (ϱ)

∫ ∞

ϱ

q (v)
(
σ (v)

v

)α/ϵ
dv

1/α

dϱ −
(
ρ′+ (s)

)2

4ρ (s)

 ds ≤ w (t1) ,

which contradicts (3.2). Hence, the proof of this theorem is complete. □

Example 3.1. Consider the DDE(
tγ

(
u′′′ (t)

)α)′
+

q0

t3α−γ+1 uα (σ0t) = 0, (3.6)

with γ < α, σ0 ∈ (0, 1) and q0 > 0. By comparing (1.1) and (3.6) we see that a (t) = tγ, σ (t) = σ0t.
Then
η0 (t) = t1−γ/α

1−γ/α , η1 (t) = t2−γ/α
(1−γ/α)(2−γ/α) , η2 (t) = t3−γ/α

(1−γ/α)(2−γ/α)(3−γ/α) , q (t) = q0
t3α−γ+1 , λ =

η0(t)
η0(σ(t)) = σ

γ/α−1
0 ,

δ =
σ

3α−γ
0 q0

α(1−γ/α)α+1(2−γ/α)α(3−γ/α)α
, δ0 = δ

1/α
(

1
σ0

)δ(1−γ/α)
, and condition (3.1) in Theorem 3.1 leads to

q0

1 − δ
σ

3α−γ−δ(1−γ/α)
0 +

q0

δ
σ

3α−γ−δ(1−γ/α)
0

(
1 − σδ(1−γ/α)

0

)
+

q0

1 − δ0
σ

3α−γ
0 >

θ

κ1
, (3.7)

where
θ = (1 − γ/α)α+1 (2 − γ/α)α (3 − γ/α)α .

Also, condition (3.2) in Theorem 3.1 is met where ρ (t) = tα and

q0 >
α2α (3α − γ)

(2σ0)α
. (3.8)

Now, by using Theorem 3.1, Eq (3.6) with α > 1 is oscillatory provided that (3.7) and (3.8) are satisfied.
Setting values for γ and α, the above criteria generated the oscillatory results of Eq (3.6).

4. Conclusions

In this paper, we investigated the asymptotic properties of positive solutions for fourth-order
quasi-linear DDEs in the canonical case. There are new conditions that ensure that Eq (1.1) has no
positive solutions. In addition, we prove an important theorem that ensures all solutions of Eq (1.1)
are oscillatory if certain criteria are met. Finally, we provided an example that supports our research
and illustrates the significance of the results. In our future study, we will try to generalize these
criteria to include the n-th order DDE.
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