Research article

Existence and multiplicity of solutions for a Schrödinger type equations involving the fractional $ p(x) $-Laplacian

  • Received: 24 February 2023 Revised: 25 April 2023 Accepted: 26 April 2023 Published: 08 May 2023
  • MSC : 35B08, 35J60, 35A15

  • We are concerned with the following Schrödinger type equation with variable exponents

    $ \begin{equation*} (-\Delta_{p(x)})^{s}u+V(x)|u|^{p(x)-2}u = f(x, u)\, \, \, \, \text{in}\, \, \, \, \mathbb{R}^{N}, \end{equation*} $

    where $ (-\Delta_{p(x)})^{s} $ is the fractional $ p(x) $-Laplace operator, $ s\in (0, 1) $, $ V:\mathbb{R}^{N}\to (0, +\infty) $ is a continuous potential function, and $ f:\mathbb{R}^{N}\times\mathbb{R}\to \mathbb{R} $ satisfies the Carathéodory condition. We study the nonlinearity of this equation which is superlinear but does not satisfy the Ambrosetti-Rabinowitz type condition. By using variational techniques and the fountain theorem, we obtain the existence and multiplicity of nontrivial solutions. Furthermore, we show that the problem has a sequence of solutions with high energies.

    Citation: Shuhai Zhu. Existence and multiplicity of solutions for a Schrödinger type equations involving the fractional $ p(x) $-Laplacian[J]. AIMS Mathematics, 2023, 8(7): 16320-16339. doi: 10.3934/math.2023836

    Related Papers:

  • We are concerned with the following Schrödinger type equation with variable exponents

    $ \begin{equation*} (-\Delta_{p(x)})^{s}u+V(x)|u|^{p(x)-2}u = f(x, u)\, \, \, \, \text{in}\, \, \, \, \mathbb{R}^{N}, \end{equation*} $

    where $ (-\Delta_{p(x)})^{s} $ is the fractional $ p(x) $-Laplace operator, $ s\in (0, 1) $, $ V:\mathbb{R}^{N}\to (0, +\infty) $ is a continuous potential function, and $ f:\mathbb{R}^{N}\times\mathbb{R}\to \mathbb{R} $ satisfies the Carathéodory condition. We study the nonlinearity of this equation which is superlinear but does not satisfy the Ambrosetti-Rabinowitz type condition. By using variational techniques and the fountain theorem, we obtain the existence and multiplicity of nontrivial solutions. Furthermore, we show that the problem has a sequence of solutions with high energies.



    加载中


    [1] E. Azroul, A. Benkirane, M. Shimi, General fractional Sobolev space with variable exponent and applications to nonlocal problems, Adv. Oper. Theory, 5 (2020), 1512–1540. https://doi.org/10.1007/s43036-020-00062-w doi: 10.1007/s43036-020-00062-w
    [2] C. O. Alves, S. B. Liu, On superlinear $p(x)$-Laplacian equations in $\mathbb{R}^{N}$, Nonlinear Anal.: Theory, Methods Appl., 73 (2010), 2566–2579. https://doi.org/10.1016/j.na.2010.06.033 doi: 10.1016/j.na.2010.06.033
    [3] E. H. Azroul, M. Shimi, Nonlocal eigenvalue problems with variable exponent, Moroccan J. Pure Appl. Anal., 4 (2018), 46–61. https://doi.org/10.1515/mjpaa-2018-0006 doi: 10.1515/mjpaa-2018-0006
    [4] C. O. Alves, M. A. S. Souto, Existence of solutions for a class of problems in ${\mathbb{IR}}^N$ involving the $p(x)$-Laplacian, In: Contributions to nonlinear analysis, Progress in Nonlinear Differential Equations and Their Applications, Vol. 66, Birkhauser, Basel, 2005. https://doi.org/10.1007/3-7643-7401-2_2
    [5] A. Bahrouni, Comparison and sub-super solution principles for the fractional $p(x)$-Laplacian, J. Math. Anal. Appl., 458 (2018), 1363–1372. https://doi.org/10.1016/j.jmaa.2017.10.025 doi: 10.1016/j.jmaa.2017.10.025
    [6] T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal.: Theory, Methods Appl., 20 (1993), 1205–1216. https://doi.org/10.1016/0362-546X(93)90151-H doi: 10.1016/0362-546X(93)90151-H
    [7] A. Baalal, M. Berghout, Traces and fractional Sobolev extension domains with variable exponent, Int. J. Math. Anal., 12 (2018), 85–98.
    [8] A. Bahrouni, V. D. Rǎdulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. Ser. S, 11 (2017), 379–389.
    [9] B. Barrios, E. Colorado, R. Servadei, F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré C, Anal. Non Linéaire, 32 (2015), 875–900. https://doi.org/10.1016/j.anihpc.2014.04.003 doi: 10.1016/j.anihpc.2014.04.003
    [10] J. Chabrowski, Y. Q. Fu, Existence of solutions for $p(x)$-Laplacian problems on bounded domains, J. Math. Anal. Appl., 306 (2005), 604–618. https://doi.org/10.1016/j.jmaa.2004.10.028 doi: 10.1016/j.jmaa.2004.10.028
    [11] N. T. Chung, Eigenvalue problems for fractional $p(x, y)$-Laplacian equations with indefinite weight, Taiwaness J. Math., 23 (2019), 1153–1173. https://doi.org/10.11650/tjm/190404 doi: 10.11650/tjm/190404
    [12] L. Diening, P. Harjulehto, P. Hästö, M. Ružicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 2011.
    [13] L. Diening, P. H$\ddot{a}$st$\ddot{o}$, A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, FSDONA04 Proc., 2004, 38–58.
    [14] L. Del Pezzo, J. D. Rossi, Traces for fractional Sobolev spaces with variable exponents, Adv. Oper. Theory, 2 (2017), 435–446. https://doi.org/10.22034/aot.1704-1152 doi: 10.22034/aot.1704-1152
    [15] X. L. Fan, Global $C^{1, \alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differ. Equ., 235 (2007), 397–417. https://doi.org/10.1016/j.jde.2007.01.008 doi: 10.1016/j.jde.2007.01.008
    [16] X. L. Fan, A constrained minimization problem involving the $p(x)$-Laplacian in $\mathbb{R}^N$, Nonlinear Anal.: Theory, Methods Appl., 69 (2008), 3661–3670. https://doi.org/10.1016/j.na.2007.10.002 doi: 10.1016/j.na.2007.10.002
    [17] X. L. Fan, $p(x)$-Laplacian equations in $\mathbb{R}^N$ with periodic data and nonperiodic perturbations, J. Math. Anal. Appl., 341 (2008), 103–119. https://doi.org/10.1016/j.jmaa.2007.10.006 doi: 10.1016/j.jmaa.2007.10.006
    [18] X. L. Fan, S. G. Deng, Remarks on Ricceri's variational principle and applications to the $p(x)$-Laplacian equations, Nonlinear Anal.: Theory, Methods Appl., 67 (2007), 3064–3075. https://doi.org/10.1016/j.na.2006.09.060 doi: 10.1016/j.na.2006.09.060
    [19] G. Franzina, G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 2 (2014), 373–386.
    [20] X. L. Fan, Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal.: Theory, Methods Appl., 52 (2003), 1843–1852. https://doi.org/10.1016/S0362-546X(02)00150-5 doi: 10.1016/S0362-546X(02)00150-5
    [21] X. L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617
    [22] J. Giacomoni, S. Tiwari, G. Warnault, Quasilinear parabolic problem with $p(x)$-Laplacian: existence, uniqueness of weak solutions and stabilization, Nonlinear Differ. Equ. Appl., 23 (2016), 24.
    [23] J. M. Kim, Y. H. Kim, J. Lee, Existence and multiplicity of solutions for equations of $p(x)$-Laplace type in $\mathbb{R}^{N}$ without (AR)-condition, Differ. Integral Equ., 31 (2018), 435–464. https://doi.org/10.57262/die/1516676437 doi: 10.57262/die/1516676437
    [24] U. Kaufmann, J. Rossi, R. Vidal, Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, Electron. J. Qual. Theory Differ. Equ., 76 (2017), 1–10.
    [25] O. Kovacik, J. R$\acute{a}$kosn$\acute{i}$k, On spaces $L^{p(x)}(\Omega)$ and $W^{k.p(x)}(\Omega)$, Czechoslovak Math. J., 41 (1991), 592–618.
    [26] J. Lee, J. M. Kim, Y. H. Kim, Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving $p(x)$-Laplacian on the entire space $\mathbb{R}^{N}$, Nonlinear Anal.: Real World Appl., 45 (2019), 620–649. https://doi.org/10.1016/j.nonrwa.2018.07.016 doi: 10.1016/j.nonrwa.2018.07.016
    [27] M. Mih$\breve{a}$ilescu, V. R$\breve{a}$dulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135 (2007), 2929–2937.
    [28] G. Molica Bisci, V. R$\breve{a}$dulescu, Multiplicity results for elliptic fractional equations with subcritical term, Nonlinear Differ. Equ. Appl., 22 (2015), 721–739. https://doi.org/10.1007/s00030-014-0302-1 doi: 10.1007/s00030-014-0302-1
    [29] M. Mih$\breve{a}$ilescu, V. R$\breve{a}$dulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. A: Math. Phys. Eng. Sci., 462 (2006), 2625–2641.
    [30] G. Molica Bisci, V. D. R$\breve{a}$dulescu, R. Servadei, Variational methods for nonlocal fractional problems, Vol. 162, Cambridge University Press, Cambridge, 2016.
    [31] S. Mosconi, M. Squassina, Nonlocal problems at nearly critical growth, Nonlinear Anal.: Theory, Methods Appl., 136 (2016), 84–101. https://doi.org/10.1016/j.na.2016.02.012 doi: 10.1016/j.na.2016.02.012
    [32] S. Mosconi, M. Squassina, Recent progresses in the theory of nonlinear nonlocal problems, Bruno Pini Math. Anal. Semin., 7 (2017), 147–164. https://doi.org/10.6092/issn.2240-2829/6696 doi: 10.6092/issn.2240-2829/6696
    [33] E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [34] R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105–2137. https://doi.org/10.3934/dcds.2013.33.2105 doi: 10.3934/dcds.2013.33.2105
    [35] M. Willem, Minimax theorems, Birkhauser, Basel, 1996.
    [36] J. H. Yao, X. Y. Wang, On an open problem involving the $p(x)$-Laplacian–A further study on the multiplicity of weak solutions to $p(x)$-Laplacian equations, Nonlinear Anal.: Theory, Methods Appl., 69 (2008), 1445–1453. https://doi.org/10.1016/j.na.2007.06.044 doi: 10.1016/j.na.2007.06.044
    [37] A. B. Zang, $p(x)$-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl., 337 (2008), 547–555. https://doi.org/10.1016/j.jmaa.2007.04.007 doi: 10.1016/j.jmaa.2007.04.007
    [38] C. Zhang, X. Zhang, Renormalized solutions for the fractional $p(x)$-Laplacian equation with $L^{1}$ date, Nonlinear Anal., 190 (2020), 111610. https://doi.org/10.1016/j.na.2019.111610 doi: 10.1016/j.na.2019.111610
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(971) PDF downloads(85) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog