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Abstract: We are concerned with the following Schrödinger type equation with variable exponents

(−∆p(x))su + V(x)|u|p(x)−2u = f (x, u) in RN ,

where (−∆p(x))s is the fractional p(x)-Laplace operator, s ∈ (0, 1), V : RN → (0,+∞) is a continuous
potential function, and f : RN ×R→ R satisfies the Carathéodory condition. We study the nonlinearity
of this equation which is superlinear but does not satisfy the Ambrosetti-Rabinowitz type condition.
By using variational techniques and the fountain theorem, we obtain the existence and multiplicity of
nontrivial solutions. Furthermore, we show that the problem has a sequence of solutions with high
energies.
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1. Introduction

In this paper, we are concerned with the existence and multiplicity of nontrivial solutions for the
following nonlinear Schrödinger type equation involving fractional p(x)-Laplacian:

(−∆p(x))su + V(x)|u|p(x)−2u = f (x, u) in RN , (1.1)

where (−∆p(x))s is the fractional p(x)-Laplacian operator, s ∈ (0, 1) and potential function V(x) satisfies
the following conditions:

(V1) V(x) ∈ C(RN ,R), infx∈RN V(x) ≥ V0 > 0;
(V2) For every constant M > 0, the Lebesgue measure of the set {x ∈ RN : V(x) ≤ M} is finite.
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The nonlocal operator (−∆p(x))s is defined as

(−∆p(x))su(x) = P.V.
∫
RN

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))
|x − y|N+sp(x,y) dy, ∀x ∈ RN ,

where P.V. denotes the Cauchy principle value and for brevity. Notice that the operator (−∆p(x))s is
the fractional version of the well known p(x)-Laplacian operator ∆p(x)u = div(|∇u|p(x)−2u), which was
first introduced by Kaufmann, Rossi and Vidal in [24]. Some properties of fractional Sobolev space
with variable exponent and the existence and multiple results of elliptic equations with fractional p(x)-
Laplace operator are studied in [1, 3, 5, 8, 14, 24, 38].

In recent years, problems involving nonlocal operators have gained a lot of attention due to their
occurrence in real world applications, such as the thin obstacle problem, optimization, finance, phase
transitions and also in pure mathematical research, such as minimal surfaces, conservation laws etc.
The celebrated work of Nezza et al. [33] provides the necessary functional set-up to study these
nonlocal operator problems using variational methods. We refer [30, 34] and references therein for
more details on problems involving fractional Laplace operator. In (1.1), when p(·) = p (constant),
(−∆p(x))s reduce to the usual fractional p-Laplace operator. In [9, 19, 28, 31, 32], the authors studied
various aspects, viz., existence, multiplicity and regularity of the solutions of the nonlinear elliptic type
problems involving fractional p-Laplace operator.

When s ≡ 1, problem (1.1) becomes the following p(x)-Laplacian equation:

−∆p(x)u + V(x)|u|p(x)−2u = f (x, u) in RN . (1.2)

These equations involving the p(x)-Laplacian arise in the modeling of electrorheological fluids and
image restorations among other problems in physics and engineering, see [12,13,25,29,36]. Different
from the Laplacian ∆ and the p-Laplacian ∆p, the p(x)-Laplacian is nonlinear and nonhomogeneous.
It is worth pointing out that Eq (1.2) received much attention after Kovacik and Rakosnik [25] set up
the variable exponent Soboev space. For example, in [16], Fan considered a constrained minimization
problem involving p(x)-Laplacian in RN , and in [17] considered p(x)-Laplacian equations in RN with
periodic data and non-periodic perturbations. Moreover, some other nonlinear problems with variable
exponent can be found in [2, 4, 10, 15, 18, 20–23, 26, 27, 36] and references therein.

A natural question is what results can be recovered when the p(x)-Laplacian operator is replaced by
the fractional p(x)-Laplacian of the form (−∆p(x))s. To our best knowledge, Kaufmann et al. [24] and
Del Pezzo et al. [14] first introduced some results on fractional Sobolev spaces with variable exponent
W s,q(x),p(x,y)(Ω) and the fractional p(x)-Laplacian. Then, the authors established compact embedding
theorems of these spaces into variable exponent Lebesgue spaces. As an application, they also prove
an existence result for nonlocal problems involving the fractional p(x)-Laplacian. In [8], Bahrouni
et al. obtained some further qualitative properties of the variable exponent fractional Sobolev space
W s,q(x),p(x,y)(Ω) and the fractional p(x)-Laplacian operator (−∆p(x))s. After that, some studies on such
problems are performed by using different approaches, see [1, 3, 5, 11] and references therein.

Motivated by the results on the p(x)-Laplacian problem and some results on the theory of fractional
Sobolev spaces with variable exponent in [1, 7, 8, 14, 24], we study the existence and multiplicity of
weak solutions for the problem (1.1) via variational techniques and fountain theorem. Moreover, we
show that the equation has a sequence of solutions with high energies. To the best of the author’s
knowledge, the present paper seems to be the first to study the infinitely solutions to the Schrödinger
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type problem with fractional p(x)-Laplacian operator. In order to state the main results, we introduce
some basic definitions of fractional Sobolev space with variable exponent.

Throughout this paper, we assume that the continuous function p : RN × RN → (1,∞) satisfies

p(x) := p(x, x) ≤ q(x) < p∗s(x) :=
N p(x, x)

N − sp(x, x)
, sp(x, y) < N, ∀x, y ∈ RN ,

where p∗s(x) is the so-called critical exponent in fractional Sobolev space with variable exponent.
Moreover, we make the following assumptions:

(P1) 1 < p− := inf
RN×RN

p(x, y) ≤ p(x, y) ≤ p+ := sup
RN×RN

p(x, y) < +∞;

(P2) p is symmetric, i.e., p(x, y) = p(y, x) for all (x, y) ∈ RN × RN .

Let F(x, t) =
∫ t

0
f (x, τ)dτ. Assume that

( f1) f ∈ C(RN × R,R) satisfies f (x, t)t ≥ 0 for all (x, t) ∈ RN × (0,+∞) and

| f (x, t)| ≤ C(|t|p(x)−1 + |t|q(x)−1), ∀(x, t) ∈ RN × R,

with p(x) ≤ q(x) ≪ p∗(x) for all x ∈ RN .
( f2) There exist C0 > 0 and µ > p+ such that

lim inf
|t|→∞

f (x, t)t
|t|µ

≥ C0 uniformly for x ∈ RN .

( f3) lim sup
|t|→0

f (x,t)t
|t|p+
= 0 uniformly for x ∈ RN .

( f4) There exist two constants C1, C2 > 0 such that

G(x, u) ≤ C1G(x, v) ≤ C2H(x, v), for 0 ≤ u ≤ v,

where G(x, t) := t f (x, t) − p−F(x, t) and H(x, t) := t f (x, t) − p+F(x, t).
( f5) f (x,−t) = − f (x, t) for all (x, t) ∈ RN × R.

The main result of this paper is as follows.

Theorem 1.1. Assume that (V1), (V2), (P1), (P2) and ( f1)–( f5) hold. Then the problem (1.1) has
infinitely many solution {uk} satisfying

Φ(uk) =
∫
RN

∫
RN

|uk(x) − uk(u)|p(x,y)

p(x, y)|x − y|N+sp(x,y) dxdy +
∫
RN

V(x)|uk|
p(x)

p(x)
dx −

∫
RN

F(x, uk)dx→ ∞

as n→ ∞, where Φ : W s,p(x,y)(RN)→ R is the energy functional corresponding to problem (1.1).

Remark 1.2. Let us consider
f (x, t) = |t|q(x)−2t, ∀t ∈ R,

where q(x) ∈ C+(RN) satisfying q(x) ≪ p∗s(x) and p+ < q−. It is easy to check that ( f1)–( f3) and ( f5)
hold. For ( f4), since F(x, t) = |t|

q(x)

q(x) , f (x, t)t = |t|q(x) and G(x, t) = (1− p−

q(x) )|t|
q(x), H(x, t) = (1− p+

q(x) )|t|
q(x),

we get that G(x, t) is nondecreasing in t ≥ 0. Moreover, in view of G, H ≥ 0, we know that

G(x, t)
H(x, t)

=
q(x) − p−

q(x) − p+
≤

q+ − p−

q− − p+
.

Choosing C1 =
q+−p−

q−−p+ , we obtain G(x, t) ≤ C1H(x, t), that is, ( f4) holds.
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Remark 1.3. Condition ( f1) means that f (x, t) is subcritical in the variable sense. Different from things
in constant case (i.e. p+ = p−), we need q(x) ≪ p∗(x). Condition ( f5) assures the energy functional Φ
is an even functional. So this condition is necessary for us to take advantage of the fountain geometry.
Furthermore, It’s known that ( f4) is much weaker than the Ambrosetti-Rabinowitz type condition in the
constant exponent case (p+ = p−).

This paper is organized as follows. In Section 2, certain basic results on fractional Sobolev spaces
with variable exponent are stated, and abstract critical point theory is presented based on fountain
theorem. Moreover, under condition (V1) and (V2), we could get some compact embedding theorems.
In Section 3, under various conditions on the nonlinear growth term f , the compactness condition
for the energy functional Φ is obtained. The existence and multiplicity of nontrivial solutions for the
problem (1.1) are established by the fountain theorem without the (AR)-condition.

Notation. For two functions a(x), b(x) ∈ C(RN), a(x) ≪ b(x) means that infx∈RN (b(x) − a(x)) > 0;
“⇀”, “→” denoted the weak convergence and strong convergence in a Banach space respectively;
“↪→”, “↪→↪→” will be used to denote continuous embedding and compact embedding between spaces
respectively. Moreover, we use C, Ci (i = 1, 2, · · · ) to denote some generic positive constants.

2. Fractional Sobolev spaces with variable exponent

In this section, we recall some definitions and basic properties of the variable exponent Lebesgue
space Lp(·)(RN) and the fractional Sobolev space with variable exponent W s,q(·),p(·,·)(RN), which will be
treated in the next section.

Set C+(RN) := {q(x) ∈ C(RN) : infx∈RN q(x) > 1}. For any q ∈ C+(RN), we define

q− := inf
x∈RN

q(x) and q+ := sup
x∈RN

q(x).

For any q(x) ∈ C+(RN), we introduce the variable exponent Lebesgue space

Lq(·)(RN) =
{

u : u is a measurable function,
∫
RN
|u(x)|q(x)dx < ∞

}
,

endowed with the Luxemburg norm

∥u∥Lq(·)(RN ) = inf
{
λ > 0 :

∫
RN

∣∣∣∣u(x)
λ

∣∣∣∣q(x)
dx ≤ 1

}
.

Lemma 2.1 ( [20, 21]). The space Lq(·)(RN) is a separable, reflexive and uniformly convex Banach
space, and its conjugate space is Lq̂(·)(RN), where 1

q(x) +
1

q̂(x) = 1. For any u ∈ Lq(·)(RN), v ∈ Lq̂(·)(RN),
we have the following Hölder type inequality∣∣∣∣∣∫

RN
uvdx

∣∣∣∣∣ ≤ (
1
q−
+

1
q̂−

)∥u∥Lq(·)(RN )∥v∥Lq̂(·)(RN ) ≤ 2∥u∥Lq(·)(RN )∥v∥Lq̂(·)(RN ).

Lemma 2.2. If 1
q(x) +

1
r(x) +

1
t(x) = 1, then for any u ∈ Lq(·)(RN), v ∈ Lr(·)(RN) and w ∈ Lt(·)(RN), we have∣∣∣∣∣∫

RN
uvwdx

∣∣∣∣∣ ≤ (
1
q−
+

1
r−
+

1
t−

)
∥u∥Lq(·)(RN )∥v∥Lr(·)(RN )∥v∥Lt(·)(RN )

≤ 3∥u∥Lq(·)(RN )∥v∥Lr(·)(RN )∥w∥Lt(·)(RN ).
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The modular of the space Lq(·)(RN), which is the mapping ρq(·) : Lq(·)(RN)→ R defined by

ρq(·)(u) =
∫
RN
|u(x)|q(x)dx, ∀u ∈ Lq(·)(RN).

Then, we have the following well-known results.

Lemma 2.3 ( [20, 21]). If u, un ∈ Lq(·)(RN), then

(1) ∥u∥Lq(·)(RN ) > 1(= 1, < 1) if and only if ρq(·)(u) > 1(= 1, < 1 resp.);
(2) if ∥u∥Lq(·)(RN ) < 1 =⇒ ∥u∥q

+

Lq(·)(RN ) ≤ ρq(·)(u) ≤ ∥u∥q
−

Lq(·)(RN );

(3) if ∥u∥Lq(·)(RN ) > 1 =⇒ ∥u∥q
−

Lq(·)(RN ) ≤ ρq(·)(u) ≤ ∥u∥q
+

Lq(·)(RN );
(4) for any un ∈ Lq(·)(RN), ρq(·)(un)→ 0⇐⇒ ∥u∥Lq(·)(RN ) → 0 as n→ ∞;
(5) for any un ∈ Lq(·)(RN), ρq(·)(un)→ ∞⇐⇒ ∥u∥Lq(·)(RN ) → ∞ as n→ ∞.

Remark 2.4. As a consequence of (2) and (3), for all u ∈ Lq(·)(RN), we have

∥u∥Lq(·)(RN ) ≤

(∫
RN
|u(x)|q(x)dx

) 1
q−

+

(∫
RN
|u(x)|q(x)dx

) 1
q+

. (2.1)

Let 0 < s < 1 and assume that p ∈ C(RN × RN , (1,+∞)) satisfy (P1) and (P2). For q ∈ C+(RN), the
fractional Sobolev space with variable exponent X := W s,q(·),p(·,·)(RN) is defined as follows

X =
{

u ∈ Lq(·)(RN) :
∫
RN

∫
RN

|u(x) − u(y)|p(x,y)

|x − y|N+sp(x,y) dxdy < +∞
}
.

Let

[u]s,p(·,·) := inf
{
λ > 0 :

∫
RN

∫
RN

|u(x) − u(y)|p(x,y)

λp(x,y)|x − y|N+sp(x,y) dxdy < 1
}

be the variable exponent Gagliardo seminorm and define

∥u∥X := ∥u∥Lq(·) + [u]s,p(·,·).

On X, we shall sometimes work with the norm

∥u∥ρ,X := inf
{
λ > 0 : ρ

(u
λ

)
< 1

}
,

where

ρ(u) :=
∫
RN

∫
RN

|u(x) − u(y)|p(x,y)

|x − y|N+sp(x,y) dxdy +
∫
RN
|u(x)|q(x)dx.

It is not difficult to see that ∥ · ∥ρ,X is an equivalent norm of ∥ · ∥X with the relation

1
2
∥u∥X ≤ ∥u∥ρ,X ≤ 2∥u∥X.

The following relations between the norm ∥ · ∥ρ,X and the modular ρ(·) can be easily obtained from
their definitions.
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Proposition 2.5. On X it holds that

(i) for u ∈ X\{0}, λ = ∥u∥ρ,X if and only if ρ( u
λ
) = 1;

(ii) ρ(u) > 1 (= 1;< 1) if and only if ∥u∥ρ,X > 1 (= 1;< 1), respectively;
(iii) if ∥u∥ρ,X ≥ 1, then ∥u∥p

−

ρ,X ≤ ρ(u) ≤ ∥u∥p
+

ρ,X;

(iv) if ∥u∥ρ,X < 1, then ∥u∥p
+

ρ,X ≤ ρ(u) ≤ ∥u∥p
−

ρ,X.

Proof. The proof is similar to [21, Theorem 3.1] and the details are omitted. □

For the bounded domain Ω ⊂ RN , the following main embedding result was obtained in [24,
Theorem 1.1].

Theorem 2.6. Let Ω be a bounded domain in RN and assume that p, q, s be as above such that
q(x) > p(x, x) for all x ∈ Ω. Then, it holds that

W s,q(·),p(·,·)(Ω) ↪→↪→ Lβ(·)(Ω)

for any β ∈ C+(Ω) with β(x) < p∗s(x) for all x ∈ Ω.

Remark 2.7. (i) It is worth pointing out that in existing articles [5, 8, 24] working on W s,q(·),p(·,·)(Ω),
the function q is actually assumed that q(x) > p(x, x) for all x ∈ Ω due to some technical reason.
Such spaces are actually not a generalization of the fractional Sobolev space W s,p(Ω).

(ii) We could like to mention that the Theorem 2.6 is holds if Ω is bounded and q(x) ≥ p(x, x) for all
x ∈ Ω, and β ∈ C+(Ω) with β(x) < p∗s(x) for all x ∈ Ω. Some detail see [38].

In what follows, for brevity, in some places we write p(x) instead of p(x, x) and in this sense,
p ∈ C+(RN). If q(x) = p(x) = p(x, x), we denote W s,q(·),p(·,·)(RN) by W s,p(·,·)(RN). Moreover, we have the
following embeddings.

Theorem 2.8. Let s ∈ (0, 1). Assume that p ∈ C+(RN × RN) be a uniformly continuous and satisfying
the conditions (P1) and (P2). Then

(i) W s,p(·,·)(RN) ↪→ Lr(·)(RN) for any uniform continuous function r ∈ C+(RN) satisfying p(x) ≤
r(x) ≪ p∗s(x) for all x ∈ RN;

(ii) W s,p(·,·)(RN) ↪→↪→ Lr(·)
Loc(R

N) for any uniform continuous function r ∈ C+(RN) with r(x) < p∗s(x)
for all x ∈ RN .

Proof. (i) It suffices to prove for the case p(x) ≪ r(x). Decompose RN by cubes Bi, (i = 0, 1, 2, · · · )
with sides of length ε > 0 and parallel to the coordinate axes, where B0 is the cube centered at the
origin.

By the uniform continuity of p and r, we can choose ε sufficiently small and t ∈ (0, s) such that

p−i ≤ r−i ≤ r+i ≤ (p−i )∗t , ∀ i ∈ N,

where p−i := inf
(x,y)∈Bi×Bi

p(x, y), r−i := inf
x∈Bi

r(x), r+i := sup
x∈Bi

r(x) and (p−i )∗t =
N p−i

N−tp−i
.

Let u ∈ W s,p(·,·)(RN) \ {0}. Set v := u
∥u∥ρ,X

. Then, by Proposition 2.5, we get∫
RN

∫
RN

|v(x) − v(y)|p(x,y)

|x − y|N+sp(x,y) dxdy +
∫
RN
|v(x)|p(x)dx = 1. (2.2)
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So, for each i ∈ N, we have that∫
Bi

∫
Bi

|v(x) − v(y)|p(x,y)

|x − y|N+sp(x,y) dxdy +
∫

Bi

|v(x)|p(x)dx ≤ 1. (2.3)

Now, we claim that there exists a constant C = C(p+, p−, s, t, ε, B0) > 0 such that

C∥v∥Lr(·)(Bi) ≤ ∥v∥s,p(·,·),Bi , ∀i ∈ N (2.4)

where
∥v∥s,p(·,·),Bi = inf

{
λ > 0 : ρBi(

u
λ

) < 1
}

with

ρBi(u) =
∫

Bi

∫
Bi

|u(x) − u(y)|p(x,y)

|x − y|N+sp(x,y) dxdy +
∫
RN
|u(x)|p(x)dx.

Indeed, for any r ∈ C+(Bi), from Corollary 3.3.4 of [12], for each i ∈ N, we get

∥v∥Lr(x)(Bi) ≤ 2(1 + |Bi|)∥v∥Lr+i (Bi)
, (2.5)

and (∫
Bi

∫
Bi

|v(x) − v(y)|p
−
i

|x − y|N+tp−i
dxdy

) 1
p−i

=

(∫
Bi

∫
Bi

|v(x) − v(y)|p
−
i

|x − y|sp−i +N+(t−s)p−i
dxdy

) 1
p−i

=

∫
Bi

∫
Bi

(
|v(x) − v(y)|
|x − y|s

)p−i 1
|x − y|N+(t−s)p−i

dxdy


1

p−i

=

∥∥∥∥∥ |v(x) − v(y)|
|x − y|s

∥∥∥∥∥
Lp−i (Bi×Bi,|x−y|−(N+(t−s)p−i )dxdy)

≤ 2
(
1 + |Bi × Bi|

) ∥∥∥∥∥ |v(x) − v(y)|
|x − y|s

∥∥∥∥∥
Lp(·,·)(Bi×Bi,|x−y|−(N+(t−s)p−i )dxdy)

.

(2.6)

Let λ > 0 be such that ∫
Bi

∫
Bi

|v(x) − v(y)|p(x,y)

λp(x,y)|x − y|N+sp(x,y) dxdy < 1.

Then, taking K = sup
Bi×Bi

{1, |x − y|s−t} ∈ [1,+∞), for λ̂ = Kλ, we have∫
Bi

∫
Bi

( |v(x) − v(y)|

λ̂|x − y|s

)p(x,y) 1
|x − y|N+(t−s)p−i

dxdy

=

∫
Bi

∫
Bi

|v(x) − v(y)|p(x,y)

λp(x,y)|x − y|N+sp(x,y)

1
K p(x,y)|x − y|(t−s)p−i

dxdy

≤

∫
Bi

∫
Bi

|v(x) − v(y)|p(x,y)

λp(x,y)|x − y|N+sp(x,y)

1
K p−i |x − y|(t−s)p−i

dxdy

≤

∫
Bi

∫
Bi

|u(x) − u(y)|p(x,y)

λp(x,y)|x − y|N+sp(x,y) dxdy

< 1,

(2.7)

AIMS Mathematics Volume 8, Issue 7, 16320–16339.



16327

which implies that ∥∥∥∥∥ |v(x) − v(y)|
|x − y|s

∥∥∥∥∥
Lp(·,·)(Bi×Bi,|x−y|−(N+(t−s)p−i )dxdy)

≤ λ̂ = Kλ. (2.8)

Taking infimum over all λ, (2.7) and (2.8) imply that∥∥∥∥∥ |v(x) − v(y)|
|x − y|s

∥∥∥∥∥
Lp(·,·)(Bi×Bi,|x−y|−(N+(t−s)p−i )dxdy)

≤ K[v]s,p(·,·),Bi . (2.9)

Together (2.6) with (2.9), there exists a constant C > 0 such that

(∫
Bi

∫
Bi

|v(x) − v(y)|p
−
i

|x − y|N+tp−i
dxdy

) 1
p−i
≤ C[v]s,p(·,·),Bi . (2.10)

Arguing as in that obtained (2.10), we get

∥v∥t,p−i ,Bi ≤ C∥v∥s,p(·,·),Bi , ∀i ∈ N, (2.11)

where

∥u∥t,p−i ,Bi =

(∫
Bi

∫
Bi

|v(x) − v(y)|p
−
i

|x − y|N+tp−i
dxdy

) 1
p−i
+

(∫
Bi

|u|p
−
i dx

) 1
p−i
.

Using the same methods of Theorems 5.4 and 6.5 in [33], there exists an extension function ṽ ∈
W t,p−i (RN) of v such that ṽ = v on Bi,

∥̃v∥t,p−i ,RN ≤ C∥v∥t,p−i ,Bi (2.12)

and

∥̃v∥p
−
i

L(p−i )∗t (RN )
≤ tp−i ω

N+tp−i
N

N 2p−i +(p−i )∗t ∥̃v∥t,p−i ,RN , (2.13)

where ωN is the volume of the unit ball in RN . So, by (2.13), the space W t,p−i (RN) is continuously
embedded in Lq(RN) for any q ∈ [ p−i , (p−i )∗t ], i.e., there exists a constant C = C(N, p−i , t) > 0 such that

∥v∥
Lr+i (Bi)

= ∥̃v∥
Lr+i (Bi)

≤ ∥̃v∥
Lr+i (RN )

≤ C∥̃v∥t,p−i ,RN . (2.14)

Thus, combining (2.14) with (2.12), (2.11) and (2.5) that there exists C > 0 such that (2.4) holds.
If ∥v∥Lr(·)(Bi) ≥ 1. Invoking Lemma 2.3 and Proposition 2.5 with taking (2.4) into account, we have∫

Bi

|v|r(x)dx ≤ ∥v∥r
+
i

Lr(·)(Bi)

≤ Cr+i

(∫
Bi

∫
Bi

|v(x) − v(y)|p(x,y)

|x − y|N+sp(x,y) dxdy +
∫

Bi

|v|p(x)dx
) r+i

p+i

≤ Cr+i

(∫
Bi

∫
Bi

|v(x) − v(y)|p(x,y)

|x − y|N+sp(x,y) dxdy +
∫

Bi

|v|p(x)dx
)
.

(2.15)
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If ∥v∥Lr(·)(Qi) < 1. Invoking Lemma 2.3 and Proposition 2.5 with taking (2.4) into account again, we
have ∫

Bi

|v|r(x)dx ≤ ∥v∥r
−
i

Lr(·)(Bi)

≤ Cr−i

(∫
Bi

∫
Bi

|v(x) − v(y)|p(x,y)

|x − y|N+sp(x,y) dxdy +
∫

Bi

|v|p(x)dx
) r−i

p+i

≤ Cr−i

(∫
Bi

∫
Bi

|v(x) − v(y)|p(x,y)

|x − y|N+sp(x,y) dxdy +
∫

Bi

|v|p(x)dx
)
.

(2.16)

Then, taking (2.15) with (2.16), for any i ∈ N, we have∫
Bi

|v|r(x)dx ≤
(
Cr−i +Cr+i

) (∫
Bi

|v|p(x)dx +
∫

Bi

∫
Bi

|v(x) − v(y)|p(x,y)

|x − y|N+sp(x,y) dxdy
)
.

Summing up the last inequality over all i ∈ N, combining with (2.2), there exists a constant C > 0 such
that ∫

RN
|v|r(x)dx ≤ C.

Thus, W s,p(·,·)(RN) ⊂ Lr(·)(RN) and hence, W s,p(·,·)(RN) ↪→ Lr(·)(RN) due to the closed graph theorem.
The proof of assertion (i) is complete.

(ii) Let B be any ball in RN . Let un ⇀ 0 in W s,p(·,·)(RN) and thus un ⇀ 0 in W s,p(·,·)(B). Invoking
Theorem 2.6, we have un → 0 in Lr(·)(B). This completed the proof of Theorem 2.8. □

Now, define the following linear subspace

E :=
{

u ∈ W s,p(·,·)(RN) :
∫
RN

V(x)|u|p(x)dx < ∞
}

with the norm

∥u∥E = inf
{
λ > 0 :

∫
RN

∫
RN

|u(x) − u(y)|p(x,y)

λp(x,y)|x − y|N+sp(x,y) dxdy +
∫
RN

V(x)
∣∣∣∣∣uλ

∣∣∣∣∣p(x)

dx ≤ 1
}
.

Under the conditions (V1) and (V2), E is continuously embedded in W s,p(·,·)(RN) as a closed subspace,
and E ↪→ Lp(·)(RN), E ↪→ Lq(x)(RN) if q(x) ∈ C+(RN) satisfies p(x) ≤ q(x) ≪ p∗s(x) for all x ∈ RN .
Therefore, E is also a separable reflexive Banach space. It is easy to see that with the norm ∥ · ∥E, the
following proposition remains valid.

Lemma 2.9. The functional ψ : E → R defined by

ψ(u) =
∫
RN

∫
RN

|u(x) − u(y)|p(x,y)

|x − y|N+sp(x,y) dxdy +
∫
RN

V(x) |u|p(x) dx

has the following properties:

(i) If ∥u∥E ≥ 1, then ∥u∥p
−

E ≤ ψ(u) ≤ ∥u∥p
+

E .
(ii) If ∥u∥E ≤ 1, then ∥u∥p

+

E ≤ ψ(u) ≤ ∥u∥p
−

E .
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Proof. We first prove the pair of inequalities. Indeed, for any λ ∈ (0, 1) it is easy to see that

λp+ ψ(u) ≤ ψ(λu) ≤ λp− ψ(u). (2.17)

Now, if ∥u∥E > 1, we have 0 < 1
∥u∥E

< 1 and ψ( 1
∥u∥E

u) = 1. Taking λ = 1
∥u∥E

in (2.17), we get

ψ(u)
∥u∥p+E

≤ 1 ≤
ψ(u)
∥u∥p−E

.

This completes the proof of Lemma 2.9 (i). The proof of the second is essentially the same. □

Lemma 2.10. Assume that V satisfies (V1) and (V2). Then

(i) E ↪→↪→ Lp(x)(RN);
(ii) E ↪→↪→ Lβ(x)(RN) for any β(x) ∈ C+(RN) with p(x) < β(x) ≪ p∗s(x).

Proof. (i) Assume un ⇀ 0 in E. We will show that un → 0 in Lp(x)(RN), that is,
∫
RN |un(x)|p(x)dx→ 0 as

n→ ∞. For any given R ∈ (0,+∞), we write∫
RN
|un|

p(x)dx =
∫

BR(0)
|un|

p(x)dx +
∫
RN\BR(0)

|un|
p(x)dx

:= I1(un) + I2(un).

Since E ↪→ W s,p(·,·)(RN) and W s,p(·,·)(BR(0)) ↪→↪→ Lp(x)(BR(0)), we have E ↪→↪→ Lp(x)(BR(0)), which
implies I1(un)→ 0 as n→ ∞.

Next, we need to show that for any ε > 0, there exists R > 0 such that

I2(un) :=
∫
RN\BR(0)

|un(x)|p(x)dx ≤ ε. (2.18)

Note that ∥un∥E < +∞. Given ε > 0, set M = 2
ε

sup
n

(
∥un∥

p+

E + ∥un∥
p−

E

)
. Denote

A = {x ∈ RN\BR(0) : V(x) ≥ M}

and
B = {x ∈ RN\BR(0) : V(x) < M}.

Then, using Lemma 2.9, we have∫
A

|un|
p(x)dx ≤

∫
A

V(x)
M
|un|

p(x)dx

≤
1
M

(∫
RN

∫
RN

|u(x) − u(y)|p(x,y)

|x − y|N+sp(x,y) dxdy +
∫
RN

V(x) |u|p(x) dx
)

≤
1
M

(∥un∥
p+

E + ∥un∥
p−

E ) ≤
ε

2
.

(2.19)
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On the other hand, by Hölder inequality and Theorem 2.6, we get∫
B

|un|
p(x)dx ≤

(∫
B

|un|
αp(x)dx

) 1
α
(∫
B

1
α
α−1 dx

) α−1
α

=

(∫
B

|un|
αp(x)dx

) 1
α

(meas(B))
α−1
α

≤ C
(
∥un∥

p−
α

E + ∥un∥
p+
α

E

)
(meas(B))

α−1
α ,

(2.20)

where the number α ∈ (1,+∞) such that p(x) < αp(x) < p∗s(x) for all x ∈ RN .
From (V2), we can choose R large enough such that

meas(B) ≤

 ε

2C(∥un∥
p−
α

E + ∥un∥
p+
α

E )


α
α−1

. (2.21)

Then, (2.20) and (2.21) imply that ∫
B

|un(x)|p(x)dx ≤
ε

2
. (2.22)

It follows from (2.19) and (2.22) that (2.18) holds and completes the proof of (i).
(ii) Let un ⇀ 0 in E. We need to show un → 0 in Lβ(x)(RN). That is∫

RN
|un|

β(x)dx→ 0 as n→ ∞. (2.23)

Since E ↪→ Lp∗s(x)(RN) is continuous and {un} is bounded in E, we have

sup
n

∫
RN
|un|

p∗s(x)dx < +∞. (2.24)

Since q(x) < β(x) ≪ p∗s(x), there exists a function γ ∈ C(RN , (0, 1)) such that

1
β(x)

=
γ(x)
p(x)
+

1 − γ(x)
p∗s(x)

a.e. in RN .

Then, by Lemma 2.1 and Remark 2.4, we get∫
RN
|un|

β(x)dx

=

∫
RN
|un|

p(x) β(x)γ(x)
p(x) |un|

p∗s(x) β(x)(1−γ(x))
p∗s (x) dx

≤ 2
( ∫
RN
|un|

p(x)dx
) β(x)γ(x)

p(x)
( ∫
RN
|un|

p∗s(x)dx
) β(x)(1−γ(x))

p∗s (x)

≤ 2


( ∫
RN
|un|

p(x)dx
)( β(x)γ(x)

p(x)

)+
+

( ∫
RN
|un|

p(x)dx
)( β(x)γ(x)

p(x)

)−
×


( ∫
RN
|un|

p∗s(x)dx
)( β(x)(1−γ(x))

p∗s (x)

)+
+

( ∫
RN
|un|

p∗s(x)dx
)( β(x)(1−γ(x))

p∗s (x)

)− .

(2.25)
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Therefore, from (2.24), (2.25) and (i), we get that un → 0 in Lβ(x)(RN), and the proof of (ii) is completed.
□

Remark 2.11. From Lemma 2.10, we know that the conditions (V1) and (V2) play an important role in
enables E to be compactly embedded into Lβ(x)(RN) type spaces.

3. Existence of weak solutions

In this section, the proof of the existence and multiplicity of nontrivial solutions for (1.1) by
applying the fountain theorem under some assumptions on f .

Equation (1.1) has a variational structure and its associated energy functional Φ : E → R is
defined by

Φ(u) =
∫
RN

∫
RN

|u(x) − u(u)|p(x,y)

p(x, y)|x − y|N+sp(x,y) dxdy +
∫
RN

V(x)|u|p(x)

p(x)
dx −

∫
RN

F(x, u)dx.

Under the assumptions ( f1)–( f3), Φ is of class C1(E,R). We say that u ∈ E is a weak solution of (1.1),
if

⟨u, v⟩s,p(·,·) +

∫
RN

V(x)|u|p(x)−2uvdx =
∫
RN

f (x, u)vdx

for all v ∈ E, where

⟨u, v⟩s,p(·,·) =

∫
RN

∫
RN

|u(x) − u(u)|p(x,y)−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp(x,y) dxdy.

Clearly, the critical points of Φ are exactly the weak solutions of problem (1.1).
Define the functional Ψ : E → R by

Ψ(u) =
∫
RN

∫
RN

|u(x) − u(y)|p(x,y)

p(x, y)|x − y|N+sp(x,y) dxdy +
∫
RN

V(x)|u|p(x)

p(x)
dx.

Then, Ψ ∈ C1(E,R) and its Fréchet derivative is

⟨Ψ′(u), v⟩ = ⟨u, v⟩s,p(·,·) +

∫
RN

V(x)|u|p(x)−2uvdx, ∀u, v ∈ E.

According to the analogous arguments in [8, Lemma 4.2], the following lemma is easily checked,
so we omit the proof.

Lemma 3.1. Assume that (V1) and (P1), (P2) hold. Then, the functional Ψ : E → R is convex and
weakly lower semicontinuous on E. Moreover, the operator Ψ′ is a mapping of (S +)-type, that is,
un ⇀ u and lim supn→∞⟨Ψ

′(un) − Ψ′(u), un − u⟩ ≤ 0 implies un → u strongly in E as n→ ∞.

Definition 3.2. For c ∈ R, we say that Φ satisfies the (C)c-condition if for any sequence {un} ⊂ E with

Φ(un)→ c, (1 + ∥un∥E)∥Φ′(un)∥ → 0,

there is a subsequence {un} such that {un} converges strongly in E.
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Let W be a reflexive and separable Banach space. It is well-known that there exist {ei}
∞
i=1 ⊂ W and

{ f ∗i }
∞
i=1 ⊂ W∗ such that

W = span{ei : i = 1, 2, · · · }, W∗ = span{ f ∗i : i = 1, 2, · · · },

and

⟨ f ∗i , e j⟩ =

1, if i = j,

0, if i , j.

Let Wi = span{ei}, then W =
⊕∞

i=1 Wi. Now we define

Yk =

k⊕
i=1

Wi, Zk =

∞⊕
i=k

Wi. (3.1)

Then, we will use the following fountain theorem [6] (see also [35]) to prove our result.

Theorem 3.3 (Fountain theorem). Let W be a real reflexive Banach space, I ∈ C1(W,R) satisfies the
(C)-condition, I(−u) = I(u). If for each sufficiently large k ∈ N, there exist ρk > δk > 0 such that the
following conditions hold:

(i) ak := inf{I(u) : u ∈ Zk, ∥u∥W = δk} → ∞ as k → ∞;
(ii) bk := max{I(u) : u ∈ Yk, ∥u∥W = ρk} ≤ 0.

Then I has a sequence of critical points {uk} ⊂ W such that I(uk)→ +∞ as k → +∞.

In the following, for the reflexive and separable Banach space E, define Yk and Zk as in (3.1), we
will show that the energy functional Φ satisfies the geometric structure. We now give a useful lemma.

Lemma 3.4. Let q(x) ∈ C+(RN) with p(x) ≤ q(x) ≪ p∗(x) and denote

αk = sup{∥u∥Lq(·)(RN ) : ∥u∥E = 1, u ∈ Zk}.

Then αk → 0 as k → ∞.

Proof. Suppose to the contrary that there exist ε0, k0 > 0, and the sequence {uk} ⊂ Zk such that

∥uk∥E = 1 and ∥uk∥Lq(·)(RN ) ≥ ε0 > 0

for all k ≥ k0. Since {uk} is bounded in E, there exists u ∈ E such that uk ⇀ u in E as k → ∞ and

⟨ f ∗j , u⟩ = lim
k→∞
⟨ f ∗j , uk⟩ = 0 for j = 1, 2, · · · .

Hence, we get u = 0. However, we obtain that

0 < ε0 ≤ lim
k→∞
∥uk∥Lq(·)(RN ) = ∥u∥Lq(·)(RN ) = 0,

which provides a contradiction. Thus, we have proved that αk → 0 as k → ∞. □

Lemma 3.5. Under the assumptions of Theorem 1.1, the geometry conditions of the fountain theorem
hold, that is, (i) and (ii) of Theorem 3.3 hold.
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Proof. (i) By ( f1) and ( f3), for any ε > 0, there exists a C(ε) > 0 such that

|F(x, u)| ≤ ε|u|p
+

+C(ε)|u|q(x), ∀(x, t) ∈ RN × R. (3.2)

Let
θk = sup

u∈Zk , ∥u∥E=1
∥u∥Lp+ (RN ), ηk = sup

u∈Zk , ∥u∥E=1
∥u∥Lq(·)(RN ). (3.3)

Then, by Lemma 3.4, we obtain θk → 0+ and ηk → 0+ as k → ∞. So, for any u ∈ Zk with ∥u∥E = δk > 1,
from (3.2), (3.3), Remark 2.4 and Lemma 2.9, we get

Φ(u) =
∫
RN

∫
RN

|u(x) − u(y)|p(x,y)

p(x, y)|x − y|N+sp(x,y) dxdy +
∫
RN

V(x)|u|p(x)

p(x)
dx −

∫
RN

F(x, u)dx

≥
1
p+
∥u∥p

−

E − ε∥u∥
p+

Lp+ (RN )
−C max{∥u∥q

−

Lq(·)(RN ), ∥u∥
q+

Lq(·)(RN )}

≥
1
p+
∥u∥p

−

E − ε
(
θk∥u∥E

)p+

−C max
{(
ηk∥u∥E

)q−

,
(
ηk∥u∥E

)q+
}
.

Let ε > 0 small enough such that ε(θk∥u∥E)p+ ≤ 1
2p+ ∥u∥

p−

E . If ∥u∥q
−

E ≥ ∥u∥
q+

E , let δk = ( 1
4p+Cηq−

k

)
1

q−−p− ,

for sufficiently large k,

Φ(u) ≥
1

4p+
( 1

4p+Cηq−

k

) p−

q−−p− .

Now ηk → 0 and q− > p+ implies that

inf
u∈Zk ,∥u∥E=δk

Φ(u)→ +∞ as k → ∞.

If ∥u∥q
−

E < ∥u∥q
+

E , we can similarly derive that infu∈Zk ,∥u∥E=δk Φ(u) → +∞ as k → ∞, hence (i) is
satisfied.

(ii) By ( f2) and ( f3), for any ε > 0, there exists a C(ε) > 0 such that

F(x, u) ≥ C(ϵ)|u|µ − ε|u|p
+

, ∀(x, u) ∈ RN × R. (3.4)

From (3.4) and Lemma 2.9, for some v ∈ Yk with ∥v∥E = 1 and t > 1, we have

Φ(tv) =
∫
RN

∫
RN

|tv(x) − tv(y)|p(x,y)

p(x, y)|x − y|N+sp(x,y) dxdy +
∫
RN

V(x)|tv|p(x)

p(x)
dx −

∫
RN

F(x, tv)dx

≤
tp+

p−
∥v∥p

+

E + εtp+
∫
RN
|v|p

+

dx −C(ε)tµ
∫
RN
|v|µdx

→ −∞ as t → +∞,

due to µ > p+ and all norms on Yk are equivalent. So there exists ρk > δk such that t = ρk concludes
Φ(tv) ≤ 0, and then

max
u∈Yk ,∥u∥E=ρk

Φ(u) ≤ 0.

Hence (ii) is satisfied. □
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Lemma 3.6. Assume that ( f1), ( f2) and ( f4) hold. Then (C)c-sequence of Φ is bounded.

Proof. Suppose that {un} ⊂ E is a (C)c-sequence for Φ, that is,

Φ(un)→ c and (1 + ∥un∥E)∥Φ′(un)∥ → 0 as n→ ∞,

which show that
Φ(un) = c + on(1), ⟨Φ′(un), un⟩ = on(1), (3.5)

where on(1) → 0 as n → ∞. We now prove that {un} is bounded in E. We argue by contradiction.
Suppose that the sequence {un} is unbounded in E, let wn =

un
∥un∥E

, then wn ∈ E with ∥wn∥E = 1. Hence,
up to a subsequence, still denoted by itself, there exists a function w ∈ E such that

wn ⇀ w in E,

wn → w in Lβ(x)(RN), for p(x) ≤ β(x) ≪ p∗s(x),
wn → w a.e. in RN .

(3.6)

If w = 0, we can define a sequence {tn} ⊂ R, as argued in [37], such that

Φ(tnun) = max
t∈[0,1]
Φ(tun).

Then, for any L > 1, and n large enough, we have

Φ(tnun) ≥ Φ(Lwn) ≥
1
p+

Lp−∥wn∥
p−

E −

∫
RN

F(x, Lwn)dx

=
1
p+

Lp− −

∫
RN

F(x, Lwn)dx.
(3.7)

Moreover, from ( f1) and (3.6), we get
∫
RN F(x, Lwn)dx→ 0. Hence, this and (3.7) imply thatΦ(tnun)→

∞ as n→ ∞ by the fact L can be large arbitrarily.
Noting that Φ(0) = 0 and Φ(un) → c, then tn ∈ (0, 1) when n is large enough. Hence,

⟨Φ′(tnun), tnun⟩ → 0 and

Φ(tnun) −
1
p−
⟨Φ′(tnun) , tnun⟩ → ∞ as n→ ∞. (3.8)

Moreover,

Φ(tnun) −
1
p−
⟨Φ′(tnun), tnun⟩

=

∫
RN

∫
RN

( 1
p(x, y)

−
1
p−

) |tnun(x) − tnun(y)|p(x,y)

|x − y|N+sp(x,y) dxdy

+

∫
RN

( 1
p(x)
−

1
p−

)
V(x)|tnun|

p(x)dx

+
1
p−

∫
RN

(
f (x, tnun)tnun − p−F(x, tnun)

)
dx

≤
1
p−

∫
RN

G(x, tnun)dx.
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This and (3.8) deduce that ∫
RN

G(x, tnun)dx→ ∞ as n→ ∞. (3.9)

On the other hand, in view of ( f4), there exist two constants C1, C2 > 0 such that

H(x, un) ≥ C1G(x, un) ≥ C2G(x, tnun). (3.10)

So, (3.9) and (3.10) imply that

∞ > c + on(1) = Φ(un) −
1
p+
⟨Φ′(un), un⟩

=

∫
RN

∫
RN

( 1
p(x, y)

−
1
p+

) |un(x) − un(y)|p(x,y)

|x − y|N+sp(x,y) dxdy

+

∫
RN

( 1
p(x)
−

1
p+

)
V(x)|un|

p(x)dx +
1
p+

∫
RN

H(x, un)dx

≥
1
p+

∫
RN

H(x, un)dx ≥
C1

p+

∫
RN

G(x, un)dx

≥
C2

p+

∫
RN

G(x, tnun)dx→ ∞

which is contradictory.
If w , 0. Assume ∥un∥E > 1, by ⟨Φ′(un), un⟩ = on(1) and Lemma 2.9, we have

1 + on(1) =
∫
RN

f (x, un)un

ψ(un)
dx ≥

∫
RN

f (x, un)un

∥un∥
p+
E

dx

≥

∫
RN

f (x, un)un

∥un∥
µ
E

dx =
∫
RN

f (x, un)un

|un|
µ
|wn|

µdx.
(3.11)

Denote Ω0 = {x ∈ RN : w(x) = 0}. Then, for x ∈ RN\Ω0, we have |un| = |wn|∥un∥E → +∞ as n→ ∞.
Hence, by ( f2), we have ∫

RN\Ω0

f (x, un)un

|un|
µ
|wn|

µdx→ +∞ as n→ ∞. (3.12)

Combining (3.11) and (3.12), we obtain a contradiction. Therefore, {un} is bounded in E and the proof
is complete. □

Lemma 3.7. Assume that conditions ( f1)–( f4) hold. Then Φ satisfies (C)c-condition, that is, for all
c ∈ R, any (C)c-sequence of Φ has a convergent subsequence.

Proof. Let {un} ⊂ E be a (C)c-sequence ofΦ. According to Lemma 3.6, we deduce that {un} is bounded
in E. Up to a subsequence, we may assume that un ⇀ u weakly in E, un → u strongly in Lβ(x)(RN) for
p(x) ≤ β(x) ≪ p∗s(x), and un(x)→ u(x) a.e. in RN .
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Using (2.1) and Lemma 2.1, we have∫
RN
|un|

p(x)−1|un − u|dx

≤ 2
∥∥∥|un|

p(x)−1
∥∥∥

L p̂(x)(RN )
∥un − u∥Lp(x)(RN )

≤ 2∥un − u∥Lp(x)(RN )

[( ∫
RN

∣∣∣∣|un|
p(x)−1

∣∣∣∣p̂(x)
dx

) p̂−

+
( ∫
RN
||un|

p(x)−1| p̂(x)dx
)p̂+

]
= 2∥un − u∥Lp(x)(RN )

[( ∫
RN
|un|

p(x)dx
) p̂−

+
( ∫
RN
|un|

p(x)dx
) p̂+

]
.

(3.13)

Hence, ( f1) and (3.13) give that∫
RN

( f (x, un) − f (x, u))(un − u)dx

≤ C
∫
RN

(
|un|

p(x)−1 + |u|p(x)−1 + |un|
q(x)−1 + |u|q(x)−1

)
|un − u|dx

= C
∫
RN
|un|

p(x)−1|un − u|dx +C
∫
RN
|u|p(x)−1|un − u|dx

+C
∫
RN
|un|

q(x)−1|un − u|dx +C
∫
RN
|u|q(x)−1|un − u|dx

≤ C∥un − u∥Lp(x)(RN )

[( ∫
RN
|un|

p(x)dx
) p̂−

+
( ∫
RN
|un|

p(x)dx
) p̂+

+
( ∫
RN
|u|p(x)dx

) p̂−

+
( ∫
RN
|u|p(x)dx

)p̂+
]

+C∥un − u∥Lq(x)(RN )

[( ∫
RN
|un|

q(x)dx
)q̂−

+
( ∫
RN
|un|

q(x)dx
)q̂+

+
( ∫
RN
|u|q(x)dx

)q̂−

+
( ∫
RN
|u|q(x)dx

)q̂+
]
.

(3.14)

By the boundedness of {un} in E, we have that

sup
n

∫
RN
|un|

p(x)dx < +∞, sup
n

∫
RN
|un|

q(x)dx < +∞ (3.15)

and ∫
RN
|u|p(x)dx < +∞,

∫
RN
|u|q(x)dx < +∞. (3.16)

Therefore, we can deduce from (3.14)–(3.16) and un → u in Lq(x)(RN) that∫
RN

( f (x, un) − f (x, u))(un − u)dx→ 0 as n→ ∞. (3.17)

Since Φ′(un)→ 0 in E∗ and un ⇀ u in E, we have

⟨Φ′(un) − Φ′(u), un − u⟩ → 0 as n→ ∞.
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That is,
⟨Ψ′(un) − Ψ′(u), un − u⟩ = ⟨Φ′(un) − Φ′(u), un − u⟩

+

∫
RN

( f (x, un) − f (x, u))(un − u)dx→ 0.
(3.18)

Then, (3.17), (3.18) and Ψ′ is a (S +)-type operator imply that un → u in E. This completes the
proof. □

Proof of Theorem 1.1. According to Lemma 3.7 and ( f5), Φ is an even functional and satisfies
(C)c-condition for all c ∈ R. Lemma 3.5 implies that the functional Φ has the fountain theorem
geometry conditions. So, from Theorem 3.3 we deduce that Φ has a sequence of critical points {uk}

with Φ(uk)→ +∞ and Theorem 1.1 follows.

4. Conclusions

This paper considers a class of Schrödinger equations involving the fractional p(x)-Laplacian in the
whole space RN . We use the variational method and the fountain theorem to prove that this nonlocal
problem has infinitely many high-energy solutions.
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12. L. Diening, P. Harjulehto, P. Hästö, M. Ružicka, Lebesgue and Sobolev spaces with variable
exponents, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 2011.
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