Research article

On the variable exponential fractional Sobolev space Ws(·),p(·)

  • Received: 27 May 2020 Accepted: 29 July 2020 Published: 06 August 2020
  • MSC : 46B20, 46E35, 46B50

  • In this paper a new kind of variable exponential fractional Sobolev spaces is introduced. For this kind of spaces, some basic properties, such as separability, reflexivity, strict convexity and denseness, are established. At last as an application the existence of solutions for so called s(·)-p(·)- Laplacian equations is discussed.

    Citation: Haikun Liu, Yongqiang Fu. On the variable exponential fractional Sobolev space Ws(·),p(·)[J]. AIMS Mathematics, 2020, 5(6): 6261-6276. doi: 10.3934/math.2020403

    Related Papers:

  • In this paper a new kind of variable exponential fractional Sobolev spaces is introduced. For this kind of spaces, some basic properties, such as separability, reflexivity, strict convexity and denseness, are established. At last as an application the existence of solutions for so called s(·)-p(·)- Laplacian equations is discussed.


    加载中


    [1] R. A. Adams, Sobolev Spaces, New York: Academic Press, 1975.
    [2] E. Azroul, A. Benkirane, M. Shimi, Eigenvalue problems involving the fractional p(x)-Laplacian operator, Adv. Oper. Theory, 4 (2019), 539-555. doi: 10.15352/aot.1809-1420
    [3] E. Azroul, A. Benkirane, M. Shimi, et al. On a class of fractional p(x)-Kirchhoff type problems, Appl. Anal., (2019),1-20. Available from: https://www.tandfonline.com/doi/full/10.1080/00036811.2019.1603372
    [4] A. Baalal, M. Berghout, Traces and fractional Sobolev extension domains with variable exponent, Int. J. Math. Anal., 12 (2018), 85-98. doi: 10.12988/ijma.2018.815
    [5] A. Bahrouni, Comparison and sub-supersolution principles for the fractional p(x)-Laplacian, J. Math. Anal. Appl., 458 (2018), 1363-1372. doi: 10.1016/j.jmaa.2017.10.025
    [6] A. Bahrouni, V. Rădulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 379- 389.
    [7] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, Foundations and harmonic analysis, Heidelberg: Birkhäuser/Springer, 2013.
    [8] L. M. Del Pezzo, J. D. Rossi, Traces for fractional Sobolev spaces with variable exponents, Adv. Oper. Theory, 2 (2017), 435-446.
    [9] L. Diening, P. Harjulehto, P. Hästö, et al. Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics 2017, Heidelberg: Springer, 2011.
    [10] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004
    [11] D. E. Edmunds, J. Lang, A. Nekvinda, On Lp(x) norms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 219-225. doi: 10.1098/rspa.1999.0309
    [12] D. E. Edmunds, J. Rákosník, Density of smooth functions in Wk,p(x)(Ω), Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236.
    [13] X. L. Fan, D. Zhao, On the spaces spaces Lp(x)(Ω) and Wk,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446.
    [14] Y. Q. Fu, X. Zhang, Application of variable exponential function space in partial differential equations (in Chinese), Beijing: Science Press, 2011.
    [15] K. Ho, Y. H. Kim, A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(.)-Laplacian, Nonlinear Anal., 188 (2019), 179-201. doi: 10.1016/j.na.2019.06.001
    [16] U. Kaufmann, J. D. Rossi, R. Vidal, Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians, Electron. J. Qual. Theory Differ. Equ., 76 (2017), 1-10.
    [17] O. Kováčik, J. Rákosník, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41 (1991), 592-618.
    [18] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034, Berlin: Springer-Verlag, 1983.
    [19] T. C. Nguyen, Eigenvalue problems for fractional p(x, y)-Laplacian equations with indefinite weight, Taiwanese J. Math., 23 (2019), 1153-1173. doi: 10.11650/tjm/190404
    [20] S. Samko, Denseness of C0(Rn) in the generalized Sobolev spaces Wm,p(x)(Rn) (Russian), Dokl. Akad. Nauk, 369 (1999), 451-454.
    [21] S. J. Shi, S. T. Chen, Some rotundities musielak-orlicz spaces Lp(x)(Ω) (in Chinese), J. Math., 29 (2009), 211-216.
    [22] I. Singer, On the set of best approximation of an element in a normed linear space, Rev. Math. Pures Appl., 5 (1960), 383-402.
    [23] M. Q. Xiang, B. L. Zhang, D. Yang, Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal., 178 (2019), 190-204. doi: 10.1016/j.na.2018.07.016
    [24] D. J. Guo, Nonlinear functional analysis (in Chinese), Jinan: Shandong Science and Technology Press, 2002.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3850) PDF downloads(334) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog