Research article

Existence results for a Kirchhoff-type equation involving fractional $ p(x) $-Laplacian

  • Received: 18 March 2021 Accepted: 20 April 2021 Published: 31 May 2021
  • MSC : 35R11, 35J35, 35S15

  • The purpose of this paper is to investigate the existence of weak solutions for a Kirchhoff-type problem driven by a non-local integro-differential operator as follows:

    $ \begin{equation*} \left\{ \begin{aligned} &M\left(\int_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p(x,y)}}{p(x,y)|x-y|^{N+sp(x,y)}}dxdy\right)(-\Delta_{p(x)})^{s}u(x) = f(x,u)&{\rm{in}}\,\,&\Omega,\\ &\quad u = 0 &{\rm{in}}\,\,&\mathbb{R}^{N}\backslash\Omega,\\ \end{aligned}\right. \end{equation*} $

    where $ \Omega $ is a smooth bounded open set in $ \mathbb{R}^N $, $ s\in (0, 1) $ and $ p $ is a positive continuous function with $ sp(x, y) < N $, $ M $ and $ f $ are two continuous functions, $ (-\Delta_{p(x)})^{s} $ is the fractional $ p(x) $-Laplacian operator. Using variational methods combined with the theory of the generalized Lebesgue Sobolev space, we prove the existence of nontrivial solution for the problem in an appropriate space of functions.

    Citation: Jinguo Zhang, Dengyun Yang, Yadong Wu. Existence results for a Kirchhoff-type equation involving fractional $ p(x) $-Laplacian[J]. AIMS Mathematics, 2021, 6(8): 8390-8403. doi: 10.3934/math.2021486

    Related Papers:

  • The purpose of this paper is to investigate the existence of weak solutions for a Kirchhoff-type problem driven by a non-local integro-differential operator as follows:

    $ \begin{equation*} \left\{ \begin{aligned} &M\left(\int_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p(x,y)}}{p(x,y)|x-y|^{N+sp(x,y)}}dxdy\right)(-\Delta_{p(x)})^{s}u(x) = f(x,u)&{\rm{in}}\,\,&\Omega,\\ &\quad u = 0 &{\rm{in}}\,\,&\mathbb{R}^{N}\backslash\Omega,\\ \end{aligned}\right. \end{equation*} $

    where $ \Omega $ is a smooth bounded open set in $ \mathbb{R}^N $, $ s\in (0, 1) $ and $ p $ is a positive continuous function with $ sp(x, y) < N $, $ M $ and $ f $ are two continuous functions, $ (-\Delta_{p(x)})^{s} $ is the fractional $ p(x) $-Laplacian operator. Using variational methods combined with the theory of the generalized Lebesgue Sobolev space, we prove the existence of nontrivial solution for the problem in an appropriate space of functions.



    加载中


    [1] E. Azroul, A. Benkira, M. Shimi, Eigenvalue problems involving the fractional $p(x)$-Laplacian operator, Adv. Oper. Theory, 4 (2019), 539–555. doi: 10.15352/aot.1809-1420
    [2] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. doi: 10.1016/0022-1236(73)90051-7
    [3] A. Bahrouni, Comparaison and sub-supersolution principles for the fractional $p(x)$-Laplacian, J. Math. Anal. Appl., 458 (2018), 1363–1372. doi: 10.1016/j.jmaa.2017.10.025
    [4] A. Bahrouni, V. D. Rădulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst., 11 (2018), 379–389.
    [5] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Birkhauser/Springer, Heidelberg, 2013.
    [6] F. Jáulio, S. A. Corrêa, G. M. Figueiredo, On an elliptic equation of $p$-Kirchhoff type via variational methods, B.e Aust. Math. Soc., 74 (2006), 263–277. doi: 10.1017/S000497270003570X
    [7] F. Jáulio, S. A. Corrêa, G. M. Figueiredo, On a $p$-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Lett., 22 (2009), 819–822. doi: 10.1016/j.aml.2008.06.042
    [8] F. Cammaroto, L. Vilasi, Multiple solutions for a Kirchhoff-type problem involving the $p(x)$-Laplacian operator, Nonlinear Anal-Theor., 74 (2011), 1841–1852. doi: 10.1016/j.na.2010.10.057
    [9] G. Dai, R. Hao, Existence of solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275–284. doi: 10.1016/j.jmaa.2009.05.031
    [10] G. Dai, D. Liu, Infinitely many positive solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 704–710. doi: 10.1016/j.jmaa.2009.06.012
    [11] G. Dai, R. Ma, Solutions for a $p(x)$-Kirchhoff type equation with Neumann boundary data, Nonlinear Anal-Real, 12 (2011), 2666–2680. doi: 10.1016/j.nonrwa.2011.03.013
    [12] G. Dai, J. Wei, Infinitely many non-negative solutions for a $p(x)$-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal., 73 (2010), 3420–3430. doi: 10.1016/j.na.2010.07.029
    [13] X. L. Fan, Remarks on eigenvalue problems involving the p(x)-Laplacian, J. Math. Anal. Appl., 352 (2009), 85–98. doi: 10.1016/j.jmaa.2008.05.086
    [14] A. Fiscella, P. Patrizia, S. Saldi, Existence of entire solutions for Schrödinger-Hardy systems involving two fractional operators, Nonlinear Anal., 158 (2017), 109–131. doi: 10.1016/j.na.2017.04.005
    [15] X. L. Fan, Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843–1852. doi: 10.1016/S0362-546X(02)00150-5
    [16] X. L. Fan, D. Zhao, On the Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. doi: 10.1006/jmaa.2000.7617
    [17] X. L. Fan, Q. Zhang, D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2005), 306–317. doi: 10.1016/j.jmaa.2003.11.020
    [18] K. Ho, Y. H. Kim, A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional $p(\cdot)$-Laplacian, Nonlinear Anal., 188 (2019), 179–201. doi: 10.1016/j.na.2019.06.001
    [19] U. Kaufmann, J. D. Rossi, R. Vidal, Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, Electron. J. Qual. Theo., 76 (2017), 1–10.
    [20] P. Pucci, M. Xiang, B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Dif., 54 (2015), 2785–2806. doi: 10.1007/s00526-015-0883-5
    [21] P. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978), 284–346. doi: 10.1016/S0304-0208(08)70870-3
    [22] H. Liu, Y. Fu, On the variable exponential fractional Sobolev space $W^{s(\cdot), p(\cdot)}$, AIMS Math., 5 (2020), 6261–6276. doi: 10.3934/math.2020403
    [23] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401–410. doi: 10.1016/S0377-0427(99)00269-1
    [24] V. D. Rădulescu, D. D. Repovš, Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015.
    [25] N. Van Thina, P. Thi Thuy, On existence solution for Schrödinger-Kirchhoff-type equations involving the fractional $p$-Laplacian in $\mathbb{R}^N$, Complex Var. Elliptic, 65 (2020), 801–822. doi: 10.1080/17476933.2019.1631287
    [26] M. Xiang, V. Radulescu, B. Zhang, Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities, ESAIM Contr. Optim. Ca., 24 (2018), 1249–1273. doi: 10.1051/cocv/2017036
    [27] Q. Yang, C. Bai, Sign-changing solutions for a class of fractional Kirchhoff-type problem with logarithmic nonlinearity. AIMS Math., 6 (2021), 868–881.
    [28] J. Zhang, Existence results for a Kirchhoff-type equations involving the fractional ${{p}_{1}}(x)\And {{p}_{2}}(x)$-Laplace operator, Collect. Math., (2021), 1–23. doi: 10.1007/s13348-021-00318-5
    [29] C. Zhang, X. Zhang, Renormalized solutions for the fractional $p(x)$-Laplacian equation with $L^1$ data, Nonlinear Anal., 190 (2020), 111610. doi: 10.1016/j.na.2019.111610
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2584) PDF downloads(183) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog