Research article Special Issues

Mean square synchronization for stochastic delayed neural networks via pinning impulsive control

  • Received: 26 April 2022 Revised: 26 May 2022 Accepted: 29 May 2022 Published: 20 June 2022
  • The mean square synchronization for a class of general stochastic delayed neural networks is explored in this paper using pinning impulsive control (PIC). It is evident that PIC combines the profits of pinning control and impulsive control. Considering that there is a time delay between the allocation and execution of impulsive instructions in practice, the idea of average impulsive delay (AID) is brought to describe this kind of delay. Furthermore, in actuality, neural networks with internal delay and stochastic disturbance are more general. Accordingly, some appropriate criteria are derived using the Lyapunov stability theory and the Fubini theorem to ensure mean square synchronization in two different cases, namely when the controller is designed with and without the impulsive delay. Finally, some numerical examples are afforded to validate the efficiency of theoretical results.

    Citation: Yilin Li, Jianwen Feng, Jingyi Wang. Mean square synchronization for stochastic delayed neural networks via pinning impulsive control[J]. Electronic Research Archive, 2022, 30(9): 3172-3192. doi: 10.3934/era.2022161

    Related Papers:

  • The mean square synchronization for a class of general stochastic delayed neural networks is explored in this paper using pinning impulsive control (PIC). It is evident that PIC combines the profits of pinning control and impulsive control. Considering that there is a time delay between the allocation and execution of impulsive instructions in practice, the idea of average impulsive delay (AID) is brought to describe this kind of delay. Furthermore, in actuality, neural networks with internal delay and stochastic disturbance are more general. Accordingly, some appropriate criteria are derived using the Lyapunov stability theory and the Fubini theorem to ensure mean square synchronization in two different cases, namely when the controller is designed with and without the impulsive delay. Finally, some numerical examples are afforded to validate the efficiency of theoretical results.



    加载中


    [1] L. O. Chua, L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988), 1257–1290. https://doi.org/10.1109/31.7600 doi: 10.1109/31.7600
    [2] N. Wang, X. Li, J. Lu, F. E. Alsaadi, Unified synchronization criteria in an array of coupled neural networks with hybrid impulses, Neural Networks, 101 (2018), 25–32. https://doi.org/10.1016/j.neunet.2018.01.017 doi: 10.1016/j.neunet.2018.01.017
    [3] L. Wu, Z. Feng, J. Lam, Stability and synchronization of discrete time neural networks with switching parameters and time-varying delays, IEEE Trans. Neural Networks Learn. Syst., 24 (2013), 1957–1972. https://doi.org/10.1109/TNNLS.2013.2271046 doi: 10.1109/TNNLS.2013.2271046
    [4] J. Cai, J. Feng, J. Wang, Y. Zhao, Quasi-synchronization of neural networks with diffusion effects via intermittent control of regional division, Neurocomputing, 409 (2020), 146–156. https://doi.org/10.1016/j.neucom.2020.05.037 doi: 10.1016/j.neucom.2020.05.037
    [5] W. Xiong, L. Xu, T. Huang, X. Yu, Y. Liu, Finite-iteration tracking of singular coupled systems based on learning control with packet losses, IEEE Trans. Syst. Man Cybern.: Syst., 60 (2020), 245–255. https://doi.org/10.1109/TSMC.2017.2770160 doi: 10.1109/TSMC.2017.2770160
    [6] C. Xiu, R. Zhou, Y. Liu, New chaotic memristive cellular neural network and its application in secure communication system, Chaos, Solitons Fractals, 141 (2020). https://doi.org/10.1016/j.chaos.2020.110316 doi: 10.1016/j.chaos.2020.110316
    [7] A. M. Alimi, C. Aouiti, E. A. Assali, Finite-time and fixed-time synchronization of a class of inertial neural networks with multi-proportional delays and its application to secure communication, Neurocomputing, 332 (2019), 29–43. https://doi.org/10.1016/j.neucom.2018.11.020 doi: 10.1016/j.neucom.2018.11.020
    [8] W. Wang, X. Jia, X. Luo, J. Kurths, M. Yuan, Fixed-time synchronization control of memristive MAM neural networks with mixed delays and application in chaotic secure communication, Chaos, Solitons Fractals, 126 (2019), 85–96. https://doi.org/10.1016/j.chaos.2019.05.041 doi: 10.1016/j.chaos.2019.05.041
    [9] Z. Yu, Y. Zhang, Z. Liu, Y. Qu, C. Su, B. Jiang, Decentralized finite-time adaptive fault-tolerant synchronization tracking control for multiple UAVs with prescribed performance, J. Franklin Inst., 357 (2020), 11830–11862. https://doi.org/10.1016/j.jfranklin.2019.11.056 doi: 10.1016/j.jfranklin.2019.11.056
    [10] J. Ghommam, M. Saad, S. Wright, Q. Zhu, Relay manoeuvre based fixed-time synchronized tracking control for UAV transport system, Aerosp. Sci. Technol., 103 (2020), 105887. https://doi.org/10.1016/j.ast.2020.105887 doi: 10.1016/j.ast.2020.105887
    [11] S. Moon, J. Baik, J. M. Seo, Chaos synchronization in generalized Lorenz systems and an application to image encryption, Commun. Nonlinear Sci. Numer. Simul., 96 (2021), 105708. https://doi.org/10.1016/j.cnsns.2021.105708 doi: 10.1016/j.cnsns.2021.105708
    [12] W. Wang, Y. Sun, M. Yuan, Z. Wang, J. Cheng, D. Fan, et al., Projective synchronization of memristive multidirectional associative memory neural networks via self-triggered impulsive control and its application to image protection, Chaos, Solitons Fractals, 105 (2021), 111110. https://doi.org/10.1016/j.chaos.2021.111110 doi: 10.1016/j.chaos.2021.111110
    [13] J. Lu, Z. Wang, J. Cao, D. W. C. Ho, J. Kurths, Pinning impulsive stabilization of nonlinear dynamical networks with time-varying delay, Int. J. Bifurcation Chaos, 22 (2012). https://doi.org/10.1142/S0218127412501763 doi: 10.1142/S0218127412501763
    [14] T. Chen, X. Liu, W. Lu, Pinning complex networks by a single controller, IEEE Trans. Circuits Syst. I Regul. Pap., 54 (2007), 1317–1326. https://doi.org/10.1109/TCSI.2007.895383 doi: 10.1109/TCSI.2007.895383
    [15] Lu. J, D. Ho, L. Wu, Exponential stabilization of switched stochastic dynamical networks, Nonlinearity, 22 (2009), 889–911. https://doi.org/10.1088/0951-7715/22/4/011 doi: 10.1088/0951-7715/22/4/011
    [16] Y. Liu, S. Zhao, Controllability for a class of linear time-varying impulsive systems with time delay in control input, IEEE Trans. Autom. Control, 56 (2011), 395–399. https://doi.org/10.1109/TAC.2010.2088811 doi: 10.1109/TAC.2010.2088811
    [17] C. Yi, J. Feng, J. Wang, C. Xu, Y. Zhao, Synchronization of delayed neural networks with hybrid coupling via partial mixed pinning impulsive control, Appl. Math. Comput., 312 (2017), 78–90. https://doi.org/10.1016/j.amc.2017.04.030 doi: 10.1016/j.amc.2017.04.030
    [18] X. Liu, K Zhang, Synchronization of linear dynamical networks on time scales: pinning control via delayed impulses, Automatica, 72 (2016), 147–152. https://doi.org/10.1016/j.automatica.2016.06.001 doi: 10.1016/j.automatica.2016.06.001
    [19] Y. Tang, H. Gao, W. Zhang, J. Kurths, Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses, Automatica, 53 (2015), 346–354. https://doi.org/10.1016/j.automatica.2015.01.008 doi: 10.1016/j.automatica.2015.01.008
    [20] Z. Wu, H. Wang, Impulsive pinning synchronization of discrete-time network, Adv. Differ. Equations, 36 (2016). https://doi.org/10.1186/s13662-016-0766-x doi: 10.1186/s13662-016-0766-x
    [21] C. Yi, C. Xu, J. Feng, J. Wang, Y. Zhao, Pinning synchronization for reaction-diffusion neural networks with delays by mixed impulsive control, Neurocomputing, 339 (2019), 270–278. https://doi.org/10.1016/j.neucom.2019.02.050 doi: 10.1016/j.neucom.2019.02.050
    [22] A. Khadra, X. Liu, X. Shen, Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses, IEEE Trans. Autom. Control, 4 (2009), 923–928. https://doi.org/10.1109/TAC.2009.2013029 doi: 10.1109/TAC.2009.2013029
    [23] X. Li, S. Song, Stabilization of delay systems: delay-dependent impulsive control, IEEE Trans. Autom. Control., 62 (2017), 406–411. https://doi.org/10.1109/TAC.2016.2530041 doi: 10.1109/TAC.2016.2530041
    [24] Z. Liu, G. Wen, X. Yu, Z. Guan, T. Huang, Delayed impulsive control for consensus of multiagent systems with switching communication graphs, IEEE Trans. Cybern., 50 (2020), 3045–3055. https://doi.org/10.1109/TCYB.2019.2926115 doi: 10.1109/TCYB.2019.2926115
    [25] B. Jiang, J. Lou, J. Lu, K. Shi, Synchronization of chaotic neural networks: Average-delay impulsive control, IEEE Trans. Neural Networks Learn. Syst., https://doi.org/10.1109/TNNLS.2021.3069830
    [26] S. Cai, P. Zhou, Z. Liu, Synchronization analysis of hybrid-coupled delayed dynamical networks with impulsive effects: A unified synchronization criterion, J. Franklin Inst., 352 (2015), 2065–2089. https://doi.org/10.1016/j.jfranklin.2015.02.022 doi: 10.1016/j.jfranklin.2015.02.022
    [27] Y. Zhao, F. Fu, J. Wang, J. Feng, H. Zhang, Synchronization of hybrid-coupled delayed dynamical networks with noises by partial mixed impulsive control strategy, Phys. A, 492 (2018), 1183–1193. https://doi.org/10.1016/j.physa.2017.11.046 doi: 10.1016/j.physa.2017.11.046
    [28] J. Lu, J. Kurths, J. Cao, N. Mahdavi, C. Huang, Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy, IEEE Trans. Neural Networks Learn. Syst., 23 (2012), 285–292. https://doi.org/10.1109/TNNLS.2011.2179312 doi: 10.1109/TNNLS.2011.2179312
    [29] W. Wong, W. Zhang, Y. Tang, X. Wu, Stochastic synchronization of complex networks with mixed impulses, IEEE Trans. Circuits Syst. I Regul. Pap., 60 (2013), 2657–2667. https://doi.org/10.1109/TCSI.2013.2244330 doi: 10.1109/TCSI.2013.2244330
    [30] J. Cao, Z. Wang, Y. Sun, Synchronization in an array of linearly stochastically coupled networks with time delays, Phys. A, 385 (2007), 718–728. https://doi.org/10.1016/j.physa.2007.06.043 doi: 10.1016/j.physa.2007.06.043
    [31] X. Yang, J. Cao, Stochastic synchronization of coupled neural networks with intermittent control, Phys. Lett. A, 373 (2009), 3259–3272. https://doi.org/10.1016/j.physleta.2009.07.013 doi: 10.1016/j.physleta.2009.07.013
    [32] S. T. S. Jeeva, S. Banerjee, P. Balasubramaniam, Adaptive synchronization in noise perturbed chaotic systems, Phys. Scr., 85 (2012), 434–442. https://doi.org/10.1088/0031-8949/85/06/065010 doi: 10.1088/0031-8949/85/06/065010
    [33] Z. Xu, D. Peng, X. Li, Synchronization of chaotic neural networks with time delay via distributed delayed impulsive control, Neural Networks, 118 (2019), 332–337. https://doi.org/10.1016/j.neunet.2019.07.002 doi: 10.1016/j.neunet.2019.07.002
    [34] L. Pan, Q. Song, J. Cao, Pinning impulsive synchronization of stochastic delayed neural networks via uniformly stable function, IEEE Trans. Neural Networks Learn. Syst., (2021), 1–11. https://doi.org/10.1109/TNNLS.2021.3057490 doi: 10.1109/TNNLS.2021.3057490
    [35] L. Li, J. Cao, Cluster synchronization in an array of coupled stochastic delayed neural networks via pinning control, Neurocomputing, 74 (2011), 846–856. https://doi.org/10.1016/j.neucom.2010.11.006 doi: 10.1016/j.neucom.2010.11.006
    [36] N. Wang, X. Li, J. Lu, F. E. Alsaadi, Unified synchronization criteria in an array of coupled neural networks with hybrid impulses, Neural Networks, 101 (2018), 25–32. https://doi.org/10.1016/j.neunet.2018.01.017 doi: 10.1016/j.neunet.2018.01.017
    [37] S. Chen, J. Feng, J. Wang, Y. Zhao, Almost sure exponential synchronization of drive-response stochastic memristive neural networks, Appl. Math. Comput., 383 (2020). https://doi.org/10.1016/j.amc.2020.125360 doi: 10.1016/j.amc.2020.125360
    [38] J. M. Landsberg, C. Robles, Fubini's Theorem in codimension two, Appl. Math. Comput., 631 (2009), 221–235. https://doi.org/10.1515/crelle.2009.047 doi: 10.1515/crelle.2009.047
    [39] C. Xu, J. Wang, J. Feng, Y. Zhao, Impulsive pinning markovian switching stochastic complex networks with time-varying delay, Math. Probl. Eng., 2013 (2013). https://doi.org/10.1155/2013/461924 doi: 10.1155/2013/461924
    [40] H. Zhang, Y. Cheng, H. Zhang, W. Zhang, J. Cao, Hybrid control design for mittag-leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects, Math. Comput. Simul., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022
    [41] H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos, Solitons Fractals, 152 (2021). https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432
    [42] L. Wang, H. Dai, Y. Sun, Adaptive feedback control in complex delayed dynamic networks, Asia-Pac. J. Chem. Eng., 3 (2008), 667–672. https://doi.org/10.1002/apj.215 doi: 10.1002/apj.215
    [43] Z. Li, Z, Duan, L. Xie, X. Liu, Distributed robust control of linear multi-agent systems with parameter uncertainties, Int. J. Control, 85 (2012), 1039–1050. https://doi.org/10.1080/00207179.2012.674644 doi: 10.1080/00207179.2012.674644
    [44] W. Chen, X. Deng, W. Zheng, Sliding mode control for linear uncertain systems with impulse effects via switching gains, IEEE Trans. Autom. Control, 67 (2021), 2044–2051. https://doi.org/10.1109/TAC.2021.3073099 doi: 10.1109/TAC.2021.3073099
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1662) PDF downloads(182) Cited by(4)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog