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Abstract: The mean square synchronization for a class of general stochastic delayed neural networks
is explored in this paper using pinning impulsive control (PIC). It is evident that PIC combines the
profits of pinning control and impulsive control. Considering that there is a time delay between the
allocation and execution of impulsive instructions in practice, the idea of average impulsive delay
(AID) is brought to describe this kind of delay. Furthermore, in actuality, neural networks with internal
delay and stochastic disturbance are more general. Accordingly, some appropriate criteria are derived
using the Lyapunov stability theory and the Fubini theorem to ensure mean square synchronization
in two different cases, namely when the controller is designed with and without the impulsive delay.
Finally, some numerical examples are afforded to validate the efficiency of theoretical results.
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1. Introduction

During the last several decades, neural networks have attracted much attention from mathematics,
medicine, biology, computer science, and many others. It is all about the broad applications in various
fields, including pattern recognition, signal processing, industrial automation and classification,
combinatorial optimization [1–5]. Synchronization of neural networks is a typical and significant
collective behavior, which has been exploited widely in real-world applications, such as secure
communications [6–8]; UAV formation control [9, 10]; image encryption and protection [11, 12]. To
be specific, synchronization in the brain means a group of neurons reach the same state through
interaction. Nevertheless, the neural network can not synchronize with some desired trajectory,
relying only on self-coupling. For achieving the coordination of neurons, the control strategy plays a
vital role.

As an innovation of the integrating single control method, PIC was primitively raised in [13].
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Before that, pinning state-feedback control strategy and impulsive control strategy are used in the
synchronization problem of networks respectively [14–16]. Moreover, Lu et al. [13] also put forward
a criterion for determining which fraction of nodes in the whole network should be controlled. As we
can see, this criterion has been extensively utilized in many articles (see [17–19] for references),
including this paper. Owing to its efficiency and convenience, PIC has drawn many scholars’
attention. Initially, the authors applied PIC to solve stabilization problem of nonlinear dynamical
networks [13]. More recently, PIC was also applied effectively to the synchronization problem of
discrete-time dynamical networks in [20]. Afterwards, researchers found that PIC can be used to
synchronize the networks mentioned above, and has the same effect on the neural networks. In [21],
an impulsive pinning controller has been developed to realize the synchronization of
reaction-diffusion neural networks. In terms of control strategy, nowadays there exist many different
ways, such as adaptive feedback control, distributed control, sliding mode control, and so on.
However, to the best of our knowledge, PIC characterize by inheriting the merits of pinning control
and impulsive control. Compared to adaptive feedback control, PIC is a discontinuous control
strategy, which means there is no need to control the system constantly. We just need to exert
influence at some instants, so, by comparison, PIC is more economic. For distributed control, it can
be challenging to apply it for impulsive system. So compared with distributed control, we apply PIC
as our control strategy which has the superiority of reducing the adverse effects of impulse. Although
sliding mode control has the advantages like ignoring external disturbances, but it’ll inevitably bring
tremor behavior and how to reduce this behavior can be challenging. Compared to sliding mode
control, PIC is more suitable for synchronous analysis of systems with stochastic disturbance, because
we can select impulse instants artificially when using PIC. Through the analysis above, PIC is
undoubtedly a powerful technique for synchronizing the networks.

It is noteworthy that in a real-life scenario, the transmission of control tasks is not always timely
and the controller cannot be updated in time. As a result, this leads to so-called delayed impulses, the
interval between sending and execution of the control task. Delayed impulses are sometimes regarded
as a preferable way to describe numerous practical problems. For instance, due to the limited speed of
signal sampling in impulsive transients in communication systems based on impulsive synchronization,
a delay called sampling delay that depends on the previous states at the sample locations will occur
in impulsive transients [22]. Regrettably, some existing results did not take delayed impulses into
account in using PIC [13, 20, 21]. Nowadays, the finite speeds of transmission and traffic congestion
have become an indisputable fact. Thus, more and more researchers are devoted to studying delayed
impulses. In [23], a constant delay h (h > 0) is utilized to describe time delays in impulse terms which
mean delayed impulses are assumed to be fixed. In addition, τi j(k) is used to describe time-varying
communication delay at time tk, where the delayed impulses are assumed with a strict upper bound [24].
In fact, the assumptions mentioned above about delayed impulses may result in conservativeness of
corresponding results. Therefore, from a more holistic perspective, a better mechanism for describing
delayed impulses is required in this paper.

From the perspective of the system under consideration, the chaotic neural network and the
corresponding response system realize synchronization via impulsive control in [25]. Unfortunately,
we can observe that the neural network model in [25] did not contain internal delay and stochastic
disturbance on the network structure. With the unremitting efforts of researchers, the research on
neural networks has developed to concerning the synchronization issues of fractional-order neural
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networks [40, 41]. However, because of the interference of the external environment, it is challenging
to maintain a fixed state. On the one hand, the time delays in impulses mentioned above, and internal
delay occurring inside the dynamical nodes ubiquitously exist in neural networks [26]. The internal
time delay is usually described by a continuous function τ(t) (see [17, 21, 27] for references), and it
usually is assumed to be bounded. On the other hand, more than internal time delay, the signal
transmission is unavoidably influenced by noises owing to random fluctuations from subtle changes of
surrounding environment that lead to stochastic disturbance. This indicated that take noises into
account is necessary and meaningful. Many solutions to the synchronization and stability challenges
for neural networks with stochastic disturbances have been found so far. For example, Lu et al. [28]
examined the synchronization of stochastic dynamical networks with noises using pinning impulsive
strategy. Since the perturbations induced by stochastic processes are all one-dimensional, the same
noise effects the signal broadcast by nodes [30].

Inspired by the preceding considerations, the purpose of this paper is to handle the issue of mean
square synchronization for a class of general stochastic neural networks with both internal and
impulsive delay by utilizing a pinning impulsive control strategy. The main novelties of the study are
as follows:

1) Considering the influence of time-varying delay and external interference on the neural network,
we take a type of stochastic delayed neural networks. Compared to the neural networks proposed
in [25], the stochastic delayed neural network model considered here is more practical. At the
same time, the difficulties and challenges of the theoretical analysis are also added, so it can meet
a broader range of applications and a topic worth investigating.

2) The PIC strategy utilized here, in fact, is the combination of pinning feedback control and
impulsive control, which is different from the majority of literature that used PIC. In other
words, the controller is excited at the impulsive instants and executed between any two
consecutive impulse moments, which means that the convergence rate of the system is
accelerated under the proposed controller. Compared with the control method in [4] and [33], the
design of this controller inherits the merits of the two control mechanisms.

3) AID is introduced to design the controller as a novel concept to deal with delayed impulses.
Compared with [23] and [24], we relax the upper constraint on impulsive control input delays.
Equally, certain adjustable synchronization requirements for stochastic delayed neural networks
are derived. By means of the Lyapunov stability theory, several sufficient criteria are given to
guarantee the mean square synchronization of the stochastic delayed neural networks.

This paper is organized as follows. Section 2 presents the stochastic delayed neural networks.
Moreover, some lemmas and definitions are presented. Section 3 compares the impulsive
synchronization criteria between two conditions (with and without impulsive delay). Two numerical
examples are given in Section 4. And finally, in Section 5, we restate the paper’s context and draw the
conclusions.

Notations: R represents the set of real numbers. Let ||·|| denotes the Euclidean norm. As = (A+AT )/2
represents the symmetric part of matrix A. ⊗ indicates Kronecker product in the usual sense. For a
symmetric matrix P, P > 0 (P < 0) means that the matrix P is positive definite (negative definite).

The notations PT and P−1 represent for the transpose and the inverse of P, respectively. #O denotes
the number of members in a finite set O. The Dini derivative of φ(t) is defined as
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D+φ(t) = lim sups→0+
φ(t+s)−φ(t)

s . (Ω,F ,P) is the standard probability space. E(·) denotes the
expectation operator with respect to some probability measure P.

2. Preliminaries

2.1. Modle description

Consider the following stochastic delayed neural network:

dxi(t) =[−Cxi(t) + A f (xi(t)) + B f (xi(t − τ(t))) +

N∑
j=1

li jx j(t) + ui(t)]dt

+ g (t, x(t), x(t − τ(t))) dω(t), i = 1, 2, · · · ,N.

(2.1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn denotes the state of the i-th neural network;
C = diag{c1, c2, . . . , cn} > 0 denotes the rate with which the i-th cell resets its potential to the resting
state when being isolated from other cells and inputs; f : Rn → Rn is an activation function;
A = (ai j)n×n, B = (bi j)n×n ∈ R

n×n are the connection weight matrices. L = (li j)N×N is the Laplacian
coupling matrix representing the coupling topology of the dynamic network. The elements li j of the
matrix L are defined as follows : if there is a connection between nodes i and j (i , j), li j = l ji > 0;
otherwise li j = l ji = 0 (i , j), and the diffusivity coupling condition lii = −

∑N
j=1, j,i li j is satisfied for

the diagonal elements lii(i = 1, 2, . . . ,N). τ(t) is transmittal time-varying delay satisfying 0 < τ(t) < τ

and 0 < τ̇(t) ≤ τ̄ < 1 with positive constants τ and τ̄; ui(t) represents the control input.
g(t, x(t), x(t − τ(t))) = g(t, x1(t), . . . , xn(t), x1(t − τ(t)), . . . , xn(t − τ(t))) ∈ Rn×n is the noise intensity
matrix in signal transmission and learning process; ω(t) = (ω1(t), ω2(t), . . . , ωn(t))T ∈ Rn is a
n-dimensional Brownian motion on complete probability space (Ω,F ,P), satisfying

Ew j(t) = 0, Ew2
i (t) = 1, Ew j(t)w j(s) = 0 (s , t).

The initial values of the system (2.1) are given by xi(s) = φi(s) ∈ C([−τ, 0],Rn), i = 1, 2, . . . ,N,
where C([−τ, 0],Rn) denotes the set of all n−dimensional continuous functions defined on the interval
[−τ, 0].

Let s(t) be a desired leader of network (2.1) satisfying

ds(t) =[−Cs(t) + A f (s(t)) + B f (s(t − τ(t)))]dt + g(t, s(t), s(t − τ(t)))dω(t), (2.2)

The initial condition is s(t) = φ(t) where φ(t) ∈ C([−τ, 0],Rn).

Remark 1. The neural network considered in this paper including time-varying delay and external
stochastic disturbance, so compared to the neural networks proposed in [25], the model considered
here is more practical. Jiang et al. [25] investigate the chaos synchronization problem of chaotic
neural network via impulsive control. Although the neural network we study are different, we all
use impulsive control because it only needs discrete control input so can achieve the reduction of
communication pressure and control cost.

Define ei(t) = xi(t)−s(t) be the error signal of node i between the current state xi(t) and the reference
state s(t). The impulsive controller can be constructed as follows by applying impulsive effects on a
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subset of systems nodes (2.1):

ui(t) =


∑+∞

k=1(dk − 1)ei(tk)δ (t − tk) − ρei(t), i ∈ O (tk) ,

0, i ∈ {1, 2, · · · ,N}\O (tk)
(2.3)

where |dk| < 1 are constants which means impulsive effects, ρ > 0 represents control strength and
denote Π = diag{ρ, . . . , ρ, 0, . . . , 0} ∈ Rn×n. The impulse instants {t1, t2, t3, . . . } satisfy lim

k→+∞
tk = +∞.

The index set of l nodes belongs to O(t) which should be impulsively controlled is determined as
follows: At time t, the expectation of ||e1 (t) ||, ||e2 (t) ||, . . . , ||eN (t) || can reorder such that

E
∥∥∥e j1 (t)

∥∥∥ ≥ E ∥∥∥e j2 (t)
∥∥∥ ≥ · · · ≥ E ∥∥∥e jl (t)

∥∥∥ ≥ E ∥∥∥e jl+1 (t)
∥∥∥ ≥ · · · ≥ E ∥∥∥e jN (t)

∥∥∥
Then, the index set of l controlled nodes O(t) is defined as O(t) = { j1, j2, . . . , jl}.

Remark 2. As for the criterion on determining which fraction of nodes in the whole network should be
controlled, subtle distinctions can be drawn between the criterion in [13] and this article. In practice,
this is because the neural network studied in this paper considers external interference so we need to
select the nodes with larger expectation rather than norm, while the network in [13] doesn’t. In [34],
the authors also utilize the criterion with expectation to arrange the node errors, which explains that as
the complexity of the system under consideration increases, the research methods need to be improved
accordingly.

Under the impulsive controller (2.3), the error system can be described by

dei(t) =[−Cei(t) + A f̃ (ei(t)) + B f̃ (ei(t − τ(t))) +

N∑
j=1

li je j(t) − ρ(i)ei(t)]dt

+ g̃ (t, e(t), e(t − τ(t))) dω(t), i = 1, 2, . . . ,N, t ∈ (tk, tk+1), k ∈ N∗

ei
(
t+
k
)

=dkei (tk) , i ∈ O (tk) , k ∈ N∗,
ei

(
t+
k
)

=ei (tk) , i ∈ {1, 2, . . . ,N}\O (tk) , k ∈ N∗.

(2.4)

where ρ(i) =
{ ρ, i ∈ O(tk)

0, i < O(tk)
and f̃ (ei(t))= f(xi(t)) − f(s(t)), g̃(t, e(t), e(t − τ(t))) = g(t, x(t), x(t − τ(t))) −

g(t, s(t), s(t − τ(t))), ei(t+
k ) = lim

h→0+
ei(tk + h).

In the next section, we will propose the conditions for realizing the mean square synchronization of
the network (2.1) and (2.2).

2.2. Definitions and assumptions

In this part, some useful definitions and lemmas are presented as a preparation for later theoretical
analysis.

Definition 1. ( [35]) The stochastic delayed neural networks (2.1) and (2.2) are said to reach mean
square synchronization if the following equations holds:

lim
t→+∞
E‖ei(t)‖2 = 0, i = 1, 2, . . . ,N.
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Definition 2. (Average Impulsive Interval [13]) The Average Impulsive Interval Ta of the impulsive
sequence {tk}k∈N∗ is defined as follows:

Ta = lim
t→+∞

t − t0

N (t, t0)

where N (t, t0) stands for the number of impulse times of {tk}k∈N∗ on the interval [t0, t).

Definition 3. (Average Impulsive Delay [25]) The Average Impulsive Delay (AID) of impulsive delay
sequence {τk}k∈N∗ is defined as follows:

τ∗ = lim inf
t→+∞

τ1 + τ2 + · · · + τN(t,t0)

N (t, t0)

where N (t, t0) has the same meaning as Definition 2 and we suppose that τk < tk − tk−1,∀k ∈ N∗.

Lemma 1. For all x, y ∈ Rn and scalar ε > 0, we have

xT y + yT x ≤ εxT x + ε−1yT y.

Lemma 2. (Fubini’s Theorem [38]) Let µ be a probability measure on A, and ν be a probability
measure on B, and let µ× ν be product measure on A× B. If f : A× B→ R is measurable with respect
to µ × ν , then ∫

A×B
f d(µ × ν) =

∫
A

(∫
B

f (x, y)ν(dy)
)
µ(dx)

=

∫
B

(∫
A

f (x, y)µ(dx)
)
ν(dy).

The following assumptions also be used throughout this paper in constructing synchronization
conditions.

Assumption 1. ([39]) For g̃(t, e(t), e(t − τ(t))) , g(t, x(t), x(t − τ(t)))− g(t, s(t), s(t − τ(t))) ∈ Rn×n, there
exist appropriate dimensional positive definite constant matrices Λ1,Λ2 such that

trace[g̃(t, e(t), e(t − τ(t)))T g̃(t, e(t), e(t − τ(t))]

6
N∑

j=1

e j(t)T Λ1e j(t) +

N∑
j=1

e j(t − τ(t))T Λ2e j(t − τ(t)).

Assumption 2. Let f (·) : Rn → Rn be a continuous vector-valued function and satisfy the following
condition for all x, y ∈ Rn

‖ f (x) − f (y)‖ ≤ κ‖x − y‖,

where κ > 0 is a constant also called Lipschitz constant.

3. Main results

In order to make the mechanism of impulsive delay clear, the following theorems are discussed for
two cases, respectively. (i) The case that doesn’t take impulsive delay into account. (ii) The case that
take impulsive delay into account. It can be seen in the following proof that impulsive delay sometimes
effectively effects for the synchronization of the system. Then, sufficient criteria are established to
guarantee the mean square synchronization of the stochastic delayed neural networks.
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3.1. The case of mean square synchronization without impulsive delay

Theorem 1. Assume that Assumptions 1 and 2 hold, if there exist a positive definite matrix P, and
constants δ1, δ2 > 0, ε1, ε2 > 0 such that the following conditions hold:
(i)

d̄k =
d2

k

2
− (d2

k − 1)
λmax(P)(N − l)

2λmin(P)N
, and 0 < d̄k < 1,

(ii)
ln d̄t + δτ

Ta
+ δ − γ < 0,

then the stochastic delayed neural networks (2.1) and (2.2) can reach mean square synchronization,
where γ > 0 is the smallest root of the equation

γ − δ1 +
δ2

1 − τ̄
eγτ = 0, (3.1)

δ1 =
1

λmax(P)

[
λmin(((Π − L) ⊗ P) − IN ⊗ (−PC +

ε1

2
PAAT P +

κ2

2ε1
In +

ε2

2
PBBT P +

λmax(P)N
2

Λ1))
]
,

δ2 =
1

λmin(P)

[
λmax(IN ⊗ (

κ2

2ε2
In +

λmax(P)N
2

Λ2))
]
,

δ = γ − δ1 +
δ2eγτ

1 − τ̄
and d̄t = max

0≤k≤N(t,t0)
{d̄k}.

Proof: Construct a Lyapunov function as shown below

V(t, e(t)) ≡ V(t) =
1
2

N∑
i=1

eT
i (t)Pei(t).

For t ∈ (tk, tk+1], k ∈ N according to Lemma 2, we have

LV(t, e(t)) =

N∑
i=1

eT
i (t)P[−Cei(t) + A f̃ (ei(t)) + B f̃ (ei(t − τ(t))) +

N∑
j=1

li je j(t) − ρ(i)ei(t)]

+
1
2

N∑
i=1

trace
[
g̃T (t, e(t), e(t − τ(t))) Pg̃ (t, (t), e(t − τ(t)))

]
.

(3.2)

Based on Lemma 1 and Assumption 2

eT
i (t)PA f̃ (ei(t)) ≤

ε1

2
eT

i (t)PAAT Pei(t) +
1

2ε1
f̃ (ei(t))T f̃ (ei(t))

≤
ε1

2
eT

i (t)PAAT Pei(t) +
κ2

2ε1
ei(t)T ei(t),

(3.3)

and
eT

i (t)PB f̃ (ei(t − τ(t))) ≤
ε2

2
eT

i (t)PBBT Pei(t) +
1

2ε2
f̃ (ei(t − τ(t)))T f̃ (ei(t − τ(t)))

≤
ε2

2
eT

i (t)PBBT Pei(t) +
κ2

2ε2
ei(t − τ(t))T ei(t − τ(t)).

(3.4)
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From Assumption 1, we can obtain

trace[g̃T (t, e(t), e(t − τ(t))) Pg̃ (t, e(t), e(t − τ(t)))]

≤ λmax(P)
N∑

j=1

[
e j(t)T Λ1e j(t) + e j(t − τ(t))T Λ2e j(t − τ(t))

]
.

(3.5)

Substituting (3.3)–(3.5) into (3.2) we have

LV(t, e(t)) ≤
N∑

i=1

eT
i (t)(−PC +

ε1

2
PAAT P +

κ2

2ε1
In +

ε2

2
PBBT P +

λmax(P)N
2

Λ1)ei(t) −
l∑

i=1

ρ(i)eT
i (t)Pei(t)

+

N∑
i=1

eT
i (t − τ(t))(

κ2

2ε2
In +

λmax(P)N
2

Λ2)ei(t − τ(t)) +

N∑
i=1

N∑
j=1

li jeT
i (t)Pe j(t)

≤E(t)T

(
IN ⊗ (−PC +

ε1

2
PAAT P +

κ2

2ε1
In +

ε2

2
PBBT P +

λmax(P)N
2

Λ1) + L ⊗ P − Π ⊗ P
)

E(t)

+ E(t − τ(t))T

(
IN ⊗ (

κ2

2ε2
In +

λmax(P)N
2

Λ2)
)

E(t − τ(t))

≤ − δ1E(t)T (IN ⊗ P) E(t) + δ2E(t − τ(t))T (IN ⊗ P) E(t − τ(t))
= − δ1V(t) + δ2V(t − τ(t))

(3.6)
where E(t) =

(
eT

1 (t), eT
2 (t), · · · , eT

N(t)
)T

.
Let

U(t) ≡ U(t, e(t)) = eγtV(t, e(t)),

where γ is the smallest root of Eq (3.1). For convenience, we denote Ṽ(t) = EV(t). Then by inequality
(Eq 3.6), one gets

LU(t) = eγt [γV(t) +LV(t)
]
≤ eγt [γV(t) − δ1V(t) + δ2V(t − τ(t))

]
.

The generalized Itô’s formula gives

eγtṼ(t) = eγtk Ṽ(tk) + E

∫ t

tk
LU(s)ds,

for any t ∈ (tk, tk+1]. Hence we have

eγtṼ(t) ≤eγtk Ṽ(tk) + E

∫ t

tk
eγs [γV(s) − δ1V(s) + δ2V(s − τ(s))

]
ds

≤eγtk Ṽ(tk) + (γ − δ1)
∫ t

tk
eγsṼ(s)ds + δ2eγτ

∫ t

tk
eγ(s−τ(s))Ṽ(s − τ(s))ds.

(3.7)

By changing variables s − τ(s) = u, we can deduce that∫ t

tk
eγ(s−τ(s))Ṽ(s − τ(s))ds =

∫ t−τ(t)

tk−τ(tk)
eγuṼ(u)

du
1 − τ̇(t)

≤
1

1 − τ̄

∫ t

tk−τ
eγuṼ(u)du. (3.8)
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Substituting Eq (3.8) into Eq (3.7), we obtain

eγtṼ(t) ≤ eγtk Ṽ(t+
k ) + (γ − δ1 +

δ2eγτ

1 − τ̄
)
∫ t

tk−τ
eγuṼ(u)du.

Then using Gronwall inequality, we get

Ṽ(t) ≤ Ṽ(t+
k )eδ(t−tk+τ)+γ(tk−t),

where δ = γ − δ1 + δ2eγτ

1−τ̄ . On the other hand, when t = tk, one can conclude

Ṽ
(
t+
k
)

=E

1
2

N∑
i=1

eT
i
(
t+
k
)

Pei
(
t+
k
)

=
d2

k

2

∑
i∈O(tk)

E
[
eT

i (tk) Pei (tk)
]

+
1
2

∑
i<O(tk)

E
[
eT

i (tk) Pei (tk)
]

=
d2

k

2

N∑
i=1

E
[
eT

i (tk) Pei (tk)
]
−

d2
k − 1
2

∑
i<O(tk)

E
[
eT

i (tk) Pei (tk)
]
.

According to the rule of nodes belongs to O(tk), we have

1
N − l

∑
i<O(tk)

E
[
eT

i (tk) Pei (tk)
]
≤
λmax(P)
N − l

∑
i<O(tk)

E
[
eT

i (tk) ei (tk)
]

≤
λmax(P)

N

N∑
i=1

E
[
eT

i (tk) ei (tk)
]
≤

λmax(P)
λmin(P)N

N∑
i=1

E
[
eT

i (tk) Pei (tk)
]
,

then it yields that

Ṽ
(
t+
k
)
≤

d2
k

2

N∑
i=1

E
[
eT

i (tk) Pei (tk)
]
−

d2
k − 1
2

N∑
i=1

λmax(P)(N − l)
λmin(P)N

E
[
eT

i (tk) Pei (tk)
]

=d̄kṼ(tk).

(3.9)

Furthermore, the mathematical induction is utilized to prove the following inequality holds for all
t ∈ (tm−1, tm] and all m ∈ N∗.

Ṽ(t) ≤
m−1∏
i=0

d̄ie(δ−γ)(t−t0)+mδτṼ0, (3.10)

where Ṽ0 = Ṽ (e (t0)). For convenience, we define τ0 , 0. Then according to (3.9) we infer :

Ṽ(t) ≤ Ṽ0eδ(t−t0+τ)+γ(t0−t) = d̄0Ṽ(t0)e(δ−γ)(t−t0)+δτ, (3.11)

in which d̄0 , 1. Thus, (3.10) holds for m = 1. Now, we’ll assume that (3.10) also applies to m = l (
l ≥ 1).
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To be precise

Ṽ(t) ≤
l−1∏
i=0

d̄ie(δ−γ)(t−t0)+lδτṼ0, ∀t ∈ (tl−1, tl]. (3.12)

We shall demonstrate that (3.10) holds for m = l + 1. When t ∈ (tl, tl+1], we have

Ṽ(t) ≤ Ṽ(t+
l )eδ(t−tl+τ)+γ(tl−t) ≤ d̄lṼ(tl)e(δ−γ)(t−tl)+δτ

≤ d̄l

 l−1∏
i=0

d̄ie(δ−γ)(tl−t0)+lδτṼ0

 e(δ−γ)(t−tl)+δτ

=

l∏
i=0

d̄ie(δ−γ)(t−t0)+(l+1)δτṼ0,

(3.13)

i.e., (3.10) holds for m = l + 1. Till now, we conclude that (3.10) holds for all m ∈ N∗. Then we infer
that

Ṽ(t) ≤
N(t,t0)∏

i=0

d̄ie(δ−γ)(t−t0)+(N(t,t0)+1)δτṼ0 ≤

N(t,t0)∏
i=0

d̄te(δ−γ)(t−t0)+(N(t,t0)+1)δτṼ0

= exp
[(

(N(t, t0) + 1)(ln d̄t + δτ)
t − t0

+ δ − γ

)
× (t − t0)

]
Ṽ0,

(3.14)

for all t ≥ t0. By using condition (ii) and the definition of Ta one can obtain that

lim
t→+∞

(
(N (t, t0) + 1)(ln d̄t + δτ)

t − t0
+ δ − γ

)
=

ln d̄t + δτ

Ta
+ δ − γ < 0.

Therefore, E
[∑N

i=1 ‖ei(t)‖2
]
→ 0 as t → ∞.

Remark 3. It can be seen from the proof process of Theorem 1 that PIC is an effective method to make
stochastic delayed neural network to achieve synchronization. Compared to [29], although the system
we considered is similar, but Wong et al. [29] adopted the average impulsive interval approach and
the comparison principle to make the system realize synchronization. So in comparison, PIC makes
the control more convenient to implement since only a small fraction of nodes is directly controlled at
each impulsive instant.

3.2. The case of mean square synchronization with impulsive delay

The investigation of impulse time delays begins with the premise that it is a constant or has a rigid
upper constraint. (see [19,20,23,24]). However, it should be mentioned that in some practical systems,
the delays may be variable. As a result, we take impulsive delay into account in this section to make
out how it works to synchronization. First of all, the controller with impulsive delay is designed as :

ui(t) =


∑+∞

k=1{dkei[(tk − τk)−] − ei(tk)}δ (t − tk) − ρei(t), i ∈ O (tk)

0, i ∈ {1, 2, · · · ,N}\O (tk) .
(3.15)
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Remark 4. As shown in (2.3) and (3.15), the controller in (2.3) only use the information of the node
belongs to O(tk) at tk, meanwhile (3.15) uses the information at tk − τk. The different effect of the two
controllers will be compared in numerical simulations.

Remark 5. According to the screening property of Dirac function δ(·), we notice that ei(t) in controller
(2.3) and ei[(t − τk)−] in controller (3.15) should be modified to ei(tk) and ei[(tk − τk)−], separately.
Due to g(x(t)) is discontinuous at tk, so according to the screening property of Dirac function δ(·),∫ tk+ε

tk−ε
g(x(t))δ(t − tk)dt = g (x (tk)) doesn’t hold. We need to replace g(x(t)) to g(x(tk)) to make Dirac

function’s property correctly. That is,
∫ tk+ε

tk−ε
g (x (tk)) δ (t − tk) dt = g (x (tk)).

Under controller (3.15), the error system is described by



dei(t) =[−Cei(t) + A f̃ (ei(t)) + B f̃ (ei(t − τ(t))) +

N∑
j=1

li je j(t) − ρ(i)ei(t)]dt

+ g̃ (t, e(t), e(t − τ(t))) dω(t), i = 1, 2, . . . ,N, t ∈ (tk, tk+1), k ∈ N∗,
ei

(
t+
k
)

=dkei[(tk − τk)−], i ∈ O (tk) , k ∈ N∗,
ei

(
t+
k
)

=ei (tk) , i ∈ {1, 2, . . . ,N}\O (tk) , k ∈ N∗.

(3.16)

then we obtain the theorem below.

Theorem 2. Assume that Assumptions 1 and 2 hold, if there exist a positive definite matrix P, and
constants δ1, δ2 > 0, ε1, ε2 > 0 such that the following conditions hold:
(i)

d̂k =
d2

k

2
(1 +

N − l
l

λmax(P)
λmin(P)

), and 0 < d̂k < 1,

(ii)

(δ − γ)(Ta − τ
∗) + ln d̂t + δτ < 0,

where d̂t = max
0≤k≤N(t,t0)

{d̂k} and the other parameters are the same as the ones in Theorem 1. Then the

mean square synchronization can be achieved with controller (3.15).

Proof: Construct a Lyapunov function as it’s in Theorem 3.1. Then we will find that the estimation
of LṼ(t) is same to Theorem 1, so just focus on Ṽ

(
t+
k

)
is enough. When t = tk, we reach the

conclusion that
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Ṽ
(
t+
k
)

=E

1
2

N∑
i=1

eT
i
(
t+
k
)

Pei
(
t+
k
)

=
d2

k

2

N∑
i=1

E
[
eT

i
(
(tk − τk)−

)
Pei

(
(tk − τk)−

)]
−

d2
k

2

∑
i<O(tk)

E
[
eT

i
(
(tk − τk)−

)
Pei

(
(tk − τk)−

)]
+

1
2

∑
i<O(tk)

E
[
eT

i
(
t+
k
)

Pei
(
t+
k
)]

≤
d2

k

2
Ṽ((tk − τk)−) +

(N − l)λmax(P)
2

ψ(tk)

≤
d2

k

2
Ṽ((tk − τk)−) +

(N − l)λmax(P)
2

ϕ(tk)

≤
d2

k

2
Ṽ((tk − τk)−) +

N − l
2l

λmax(P)
λmin(P)

∑
i∈O(tk)

E
[
eT

i
(
t+
k
)

Pei
(
t+
k
)]

≤d̂kṼ((tk − τk)−),

(3.17)

where ϕ(tk) = min{E||ei(tk)|| : i ∈ O(tk)} and ψ (tk) = max {E ‖ei (tk)‖ : i < O (tk)} . The next discussions
will be derived from (3.17).

Furthermore, the mathematical induction is also utilized to prove the following inequality holds for
all t ∈ (tm−1, tm] and all m ∈ N∗.

Ṽ(t) ≤
m−1∏
i=0

d̂i exp((δ − γ)(t −
m−1∑
j=1

τ j − t0))emδτṼ0, (3.18)

where Ṽ0 = Ṽ (e (t0)). Also define τ0 , 0, it follows from (3.17) that

Ṽ(t) ≤ Ṽ0eδ(t−t0+τ)+γ(t0−t) = d̄0Ṽ(t0)e(δ−γ)(t−τ0−t0)+δτ. (3.19)

Thus, we infer that (3.18) holds for m = 1.Now, we’ll assume that (3.18) also applies to m = l ( l ≥ 1).
To be precise,

Ṽ(t) ≤
l−1∏
i=0

d̂i exp

(δ − γ)(t −
l−1∑
j=1

τ j − t0)

 elδτṼ0, ∀t ∈ [tl−1, tl). (3.20)

We shall demonstrate that (3.18) holds for m = l + 1.
Based on the assumptions that τk < tk − tk−1 for all k ∈ N∗, which infers that tl − τl ∈ (tl−1, tl], then

we get

Ṽ
(
t+
l
)
≤ d̂lṼ

(
(tl − τl)−

)
≤ d̂l

l−1∏
i=0

d̂i exp

(δ − γ)(tl − τl −

l−1∑
j=1

τ j − t0)

 elδτṼ0,
(3.21)
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According to Ṽ(t) ≤ Ṽ
(
t+
l

)
eδ(t−tl+τ+γ(tl−t)), then for all t ∈ (tl, tl+1] we have

Ṽ(t) ≤
l∏

i=0

d̂i exp

(δ − γ)(tl −

l∑
j=1

τ j − t0)

 elδτ+(δ−γ)(t−tl)+δτṼ0

=

l∏
i=1

d̂i exp

(δ − γ)(t −
l∑

j=1

τ j − t0)

 e(l+1)δτṼ0,

(3.22)

i.e., (3.18) holds for m = l + 1. As a result, by mathematical induction, it is possible to verify that
(3.18) holds for each m ∈ N∗. We can then conclude that

Ṽ(t) ≤
N(t,t0)∏

i=0

d̂i exp((δ − γ)(t −
N(t,t0)∑

j=0

τ j − t0))e(N(t,t0)+1)δτṼ0

≤

N(t,t0)∏
i=0

d̂t exp((δ − γ)(t −
N(t,t0)∑

j=0

τ j − t0))e(N(t,t0)+1)δτṼ0

= exp
[( (N(t, t0) + 1)(ln d̂t + δτ) − (δ − γ)

∑N(t,t0)
j=0 τ j

N(t, t0)

/
t − t0

N(t, t0)

)
× (t − t0)

]
e(δ−γ)(t−t0)Ṽ0

= exp
[( (N(t, t0) + 1)(ln d̂t + δτ) − (δ − γ)

∑N(t,t0)
j=0 τ j

N(t, t0)

/
t − t0

N(t, t0)
+ (δ − γ)

)
× (t − t0)

]
Ṽ0,

for all t ≥ t0. By using condition (ii) and the definitions of Ta and τ∗ it’s possible to obtain that

lim sup
t→+∞

[  (N (t, t0) + 1)(ln d̂t + δτ) − (δ − γ)
∑N(t,t0)

j=0 τ j

N (t, t0)

/
t − t0

N (t, t0)

 + (δ − γ)
]

≤
(ln d̂t + δτ) + (δ − γ)(Ta − τ

∗)
Ta

< 0.

Therefore, E
[∑N

i=1 ‖ei(t)‖2
]
→ 0 as t → 0.

Remark 6. Controller (3.15) is the result that take impulsive control input delays into account. Yi
et al. investigated hybrid time-varying delays including transmittal delay, discrete delay, distributed
delay in [16], but hardly concerned about impulsive control input delays. Compared to [16], the
situation considered here is more realistic. Due to the introduction of impulsive control input delays,
we complete the proof of three criteria with the help of AID method.

Notice that condition (i) in Theorem 2 means that |dk| <
√

1
1+ N−l

l
λmax(P)
λmin(P)

. In fact, if there satisfied

special conditions for certain k, k ∈ 1, 2, . . . ,N at tk − τk, then the restrictions on dk can be further

relaxed to |dk| <
√

1
1+ N−l

l ( λmax(P)
λmin(P) −

λmin(P)
λmax(P) )

. The following theorem can be obtained by further estimating

Ṽ(t+
k ).
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Theorem 3. Assume that Assumptions 1 and 2 hold, if there exist a positive definite matrix P, and
constants δ1, δ2 > 0, ε1, ε2 > 0 such that the following conditions hold:
(i)

d̂k =

{ d2
k

2 (1 + N−l
l

λmax(P)
λmin(P) ), ϕ̂(tk − τk) > ψ̂(tk − τk)

d2
k

2 (1 + N−l
l (λmax(P)

λmin(P) −
λmin(P)
λmax(P) )), ϕ̂(tk − τk) ≤ ψ̂(tk − τk)

, and 0 < d̂k < 1,

(ii)
(δ − γ)(Ta − τ

∗) + ln d̂t + δτ < 0,

where ϕ̂(tk) = max{E||ei(tk)|| : i ∈ O(tk)}, ψ̂(tk) = min{E||ei(tk)|| : i < O(tk)}, d̂t = max
0≤k≤N(t,t0)

{d̂k} and the

other parameters are the same as the ones in Theorem 1. Then the mean square synchronization can
be achieves with controller (3.15).

Proof: We can deduce from Theorem 2. that

Ṽ
(
t+
k
)

=
d2

k

2

N∑
i=1

E
[
eT

i
(
(tk − τk)−

)
Pei

(
(tk − τk)−

)]
−

d2
k

2

∑
i<O(tk)

E
[
eT

i
(
(tk − τk)−

)
Pei

(
(tk − τk)−

)]
+

1
2

∑
i<O(tk)

E
[
eT

i
(
t+
k
)

Pei
(
t+
k
)]
.

(3.23)

Focus on the second term, when ϕ̂ (tk − τk) ≤ ψ̂ (tk − τk)

− d2
k

∑
i<O(tk)

E
[
eT

i
(
(tk − τk)−

)
Pei

(
(tk − τk)−

)]
≤ −d2

kλmin(P)
∑

i<O(tk)

E
[
eT

i
(
(tk − τk)−

)
ei

(
(tk − τk)−

)]
≤ −d2

kλmin(P)(N − l)ψ̂
(
(tk − τk)−

)
≤ −d2

kλmin(P)(N − l)ϕ̂
(
(tk − τk)−

)
≤ −d2

kλmin(P)
N − l

l

∑
i∈O(tk)

E
[
eT

i
(
(tk − τk)−

)
ei

(
(tk − τk)−

)]
≤ −d2

k
N − l

l
λmin(P)
λmax(P)

Ṽ((tk − τk)−).

(3.24)

The following proof is the same as Theorem 2.

Remark 7. Theorem 3 indicates that when ψ̂(tk − τk) < ϕ̂(tk − τk), the range of values for dk is larger
than it in Theorem 2. Obviously, there exist ψ̂(tk) < ψ(tk) < ϕ(tk) < ϕ̂(tk) when t = tk. Nevertheless,
ψ̂(tk − τk) < ψ(tk − τk) < ϕ(tk − τk) < ϕ̂(tk − τk) doesn’t always stand up when t = tk − τk. For instance,
we suppose that O(tk) = {1, 2, . . . , l} and ‖e1 (t)‖ ≥ ‖e2 (t)‖ ≥ · · · ≥ ‖el (t)‖ ≥ ||el+1(t)|| ≥ · · · ≥ ||eN(t)||,
then we can get ϕ(tk) = min{||ei(tk)|| : i ∈ O(tk)} = ||el(tk)|| ≥ ψ(tk) = max{||ei(tk)|| : i < O(tk)} =

||el+1(tk)||. But when τk , 0, ||el(tk − τk)|| ≥ ||el+1(tk − τk)|| may not be true. Furthermore, the situations
ψ̂(tk − τk) < ψ(tk − τk) and ϕ̂(tk − τk) < ϕ(tk − τk) may also not be true. In other words, although the
nodes are divided into two groups when t = tk (the nodes belong to O become a group while the others
become another group), the relationship of their norm is only true at tk, not necessarily at other times.
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4. Numerical simulations

Two numerical simulations are presented to demonstrate the applicability of the theoretic analysis
presented in this paper.

Example 1: Consider the stochastic cellar neural network (2.1) composed of 10 units with 2-D and
associated leader (2.2), whose parameters are selected as follows: f (xi(t)) = (tanhxi1(t) , tanhxi2(t))T,
τ(t) = 0.1 et

1+et ,

C =

(
−1 0
0 −1

)
, A =

(
2 −0.1
−5 4.5

)
, B =

(
−1.5 −0.1
−0.2 −4

)
,

L =



−2 1 0 0 0 0 0 0 0 1
1 −2 1 0 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0 0
0 0 1 −2 1 0 0 0 0 0
0 0 0 1 −2 1 0 0 0 0
0 0 0 0 1 −2 1 0 0 0
0 0 0 0 0 1 −2 1 0 0
0 0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 0 1 −2 1
1 0 0 0 0 0 0 0 1 −2



,

g (t, x(t), x(t − τ(t))) =

(
−0.1xi1(t) 0

0 0.1xi2(t)

)
+

(
−0.2xi1(t − τ(t)) 0

0 −0.2xi2(t − τ(t))

)
.

Figure 1 describes xi, i = 1, 2, . . . , 10 under 3 pinned nodes, from which one can see that the
stochastic cellar neural network approach associated target as time goes.

(a) xi1(t) (b) xi2(t)

Figure 1. xi1(t) and xi2(t), i = 1, 2, . . . , 10 with controller (2.3).

In addition to depict the change trend of xi(t), i = 1, 2, . . . , 10, the state curve of error system can
also be observed.
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Figure 2. ||E(t)|| = (
∑10

i=1 ||ei(t)||2)1/2 with controller(2.3).

The norm of error system E(t) is displayed in Figure 2. It can be seen that the norm of E(t) has
exceeded 1000 at the beginning, while converge to 0 in about 0.42s, which indicates that effectiveness
of PIC on synchronizing stochastic delayed neural networks (2.1) and (2.2).

Example 2: When the impulsive delay is considered, we build an impulsive delay sequence in which
τk = ((−1)k/200) + 0.005|sin(k2)|, it suggests that τ∗ = 0.0064. In order to find out the influence of
impulsive control input delays, the parameters are assumed to be the same as those given in Example 1.

(a) xi1(t) (b) xi2(t)

Figure 3. xi1(t) and xi2(t), i = 1, 2, . . . , 10 with controller (3.15).

Focused on Figure 3, one can observe that under controller (3.15) which contains impulsive control
input delay τk, stochastic delayed neural networks (2.1) and (2.2) can also realize synchronization.
With the data given before, the norm of synchronization error E(t) is plotted in Figure 4.
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Figure 4. ||E(t)|| = (
∑10

i=1 ||ei(t)||2)1/2 with controller (3.15).

Comparing the results of Examples 1 and 2, especially ||E(t)|| in Figures 2 and 4, we could observe
that although the instant of realizing synchronization are different, however, the effect of the
synchronization almost the same. Therefore, in view of after the impulsive signal is sent, the control
task is often not been executed immediately, so it’s more realistic and widely applicable to take
impulsive delay into account.

5. Conclusions

The mean square synchronization of stochastic delayed neural networks was investigated in this
research using mixed PIC. We solve the problem with an impulsive control strategy. Considering the
time delay in impulsive signal transmission, we design two kinds of pinning impulsive controllers to
compare the convergence speed of the system with and without impulsive delay. The controller we
designed is effective because the nodes which belong to the controlled node set at some impulsive
instant are those with the larger norm, and the size of the controlled node set is determined. To ensure
the neural network’s mean square synchronization, some sufficient conditions are derived. Eventually,
two simulations are performed to verify the authenticity of our findings.
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