In this paper, the problem on finite-/fixed-time synchronization (FFTS) is investigated for a class of diffusive Hopfield neural networks with leakage and discrete delays. Some new and useful criteria independent on time delays but dependent on the diffusion coefficients are established to guarantee the FFTS for the addressed network model under a unified framework. In sharp contrast to the existed results which can only finite-timely or fixed-timely synchronize the systems with both diffusion effects and leakage delays, the theoretical results of this paper are more general and practical. Finally, a numerical example is presented to show the effectiveness of the proposed control methods.
Citation: Minglei Fang, Jinzhi Liu, Wei Wang. Finite-/fixed-time synchronization of leakage and discrete delayed Hopfield neural networks with diffusion effects[J]. Electronic Research Archive, 2023, 31(7): 4088-4101. doi: 10.3934/era.2023208
In this paper, the problem on finite-/fixed-time synchronization (FFTS) is investigated for a class of diffusive Hopfield neural networks with leakage and discrete delays. Some new and useful criteria independent on time delays but dependent on the diffusion coefficients are established to guarantee the FFTS for the addressed network model under a unified framework. In sharp contrast to the existed results which can only finite-timely or fixed-timely synchronize the systems with both diffusion effects and leakage delays, the theoretical results of this paper are more general and practical. Finally, a numerical example is presented to show the effectiveness of the proposed control methods.
[1] | J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA, 79 (1982), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554 doi: 10.1073/pnas.79.8.2554 |
[2] | J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. USA, 81 (1984), 3088–3092. https://doi.org/10.1073/pnas.81.10.3088 doi: 10.1073/pnas.81.10.3088 |
[3] | N. M. Nasrabadi, W. Li, Object recognition by a Hopfield neural network, IEEE Trans. Syst. Man Cybern., 21 (1991), 1523–1535. https://doi.org/10.1109/21.135694 doi: 10.1109/21.135694 |
[4] | G. Pajares, A Hopfield neural network for image change detection, IEEE Trans. Neural Networks, 17 (2006), 1250–1264. https://doi.org/10.1109/TNN.2006.875978 doi: 10.1109/TNN.2006.875978 |
[5] | U. P. Wen, K. M. Lan, H. S. Shih, A review of Hopfield neural networks for solving mathematical programming problems, Eur. J. Oper. Res., 198 (2009), 675–687. https://doi.org/10.1016/j.ejor.2008.11.002 doi: 10.1016/j.ejor.2008.11.002 |
[6] | H. Zhang, Z. Wang, D. Liu, A comprehensive review of stability analysis of continuous-time recurrent neural networks, IEEE Trans. Neural Networks Learn. Syst., 25 (2014), 1229–1262. https://doi.org/10.1109/TNNLS.2014.2317880 doi: 10.1109/TNNLS.2014.2317880 |
[7] | H. Lin, C. Wang, F. Yu, J. Sun, S. Du, Z. Deng, et al., A review of chaotic systems based on memristive Hopfield neural networks, Mathematics, 11 (2023), 1369. https://doi.org/10.3390/math11061369 doi: 10.3390/math11061369 |
[8] | H. Lin, C. Wang, Y. Sun, T. Wang, Generating n-scroll chaotic attractors from a memristor-based magnetized Hopfield neural network, IEEE Trans. Circuits Syst. II Express Briefs, 70 (2022), 311–315. https://doi.org/10.1109/TCSII.2022.3212394 doi: 10.1109/TCSII.2022.3212394 |
[9] | J. Bélair, S. A. Campbell, P. van den Driessche, Frustration, stability, and delay-induced oscillations in a neural network model, SIAM J. Appl. Math., 56 (1996), 245–255. https://doi.org/10.1137/S0036139994274526 doi: 10.1137/S0036139994274526 |
[10] | H. Zhao, L. Wang, C. Ma, Hopf bifurcation and stability analysis on discrete-time Hopfield neural network with delay, Nonlinear Anal. Real World Appl., 9 (2008), 103–113. https://doi.org/10.1016/j.nonrwa.2006.09.005 doi: 10.1016/j.nonrwa.2006.09.005 |
[11] | K. Gopalsamy, Leakage delays in BAM, J. Math. Anal. Appl., 325 (2007), 1117–1132. https://doi.org/10.1016/j.jmaa.2006.02.039 |
[12] | X. Li, J. Cao, Delay-dependent stability of neural networks of neutral type with time delay in the leakage term, Nonlinearity, 23 (2010), 1709. https://doi.org/10.1088/0951-7715/23/7/010 doi: 10.1088/0951-7715/23/7/010 |
[13] | R. Sakthivel, P. Vadivel, K. Mathiyalagan, A. Arunkumar, M. Sivachitra, Design of state estimator for bidirectional associative memory neural networks with leakage delays, Inf. Sci., 296 (2015), 263–274. https://doi.org/10.1016/j.ins.2014.10.063 doi: 10.1016/j.ins.2014.10.063 |
[14] | L. Duan, H. Wei, L. Huang, Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations, Fuzzy Sets Syst., 361 (2019), 56–70. https://doi.org/10.1016/j.fss.2018.04.017 doi: 10.1016/j.fss.2018.04.017 |
[15] | C. Xu, L. Chen, Effect of leakage delay on the almost periodic solutions of fuzzy cellular neural networks, J. Exp. Theor. Artif. Intell., 30 (2018), 993–1011. https://doi.org/10.1080/0952813X.2018.1509895 doi: 10.1080/0952813X.2018.1509895 |
[16] | C. Aouiti, F. Miaadi, Pullback attractor for neutral Hopfield neural networks with time delay in the leakage term and mixed time delays, Neural Comput. Appl., 31 (2019), 4113–4122. https://doi.org/10.1007/s00521-017-3314-z doi: 10.1007/s00521-017-3314-z |
[17] | C. Hu, H. Jiang, Z. Teng, Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms, IEEE Trans. Neural Networks, 21 (2010), 67–81. https://doi.org/10.1109/TNN.2009.2034318 doi: 10.1109/TNN.2009.2034318 |
[18] | X. Hu, L. Wang, C. Zhang, X. Wan, Y. He, Fixed-time stabilization of discontinuous spatiotemporal neural networks with time-varying coefficients via aperiodically switching control, Sci. China Inf. Sci., 631 (2023), 241–255. https://doi.org/10.1007/s11432-022-3633-9 doi: 10.1007/s11432-022-3633-9 |
[19] | L. Shanmugam, P. Mani, R. Rajan, Y. H. Joo, Adaptive synchronization of reaction-diffusion neural networks and its application to secure communication, IEEE Trans. Cybern., 50 (2018), 911–922. https://doi.org/10.1109/TCYB.2018.2877410 doi: 10.1109/TCYB.2018.2877410 |
[20] | C. Zhou, C. Wang, W. Yao, H. Lin, Observer-based synchronization of memristive neural networks under DoS attacks and actuator saturation and its application to image encryption, Appl. Math. Comput., 425 (2022), 127080. https://doi.org/10.1016/j.amc.2022.127080 doi: 10.1016/j.amc.2022.127080 |
[21] | L. Wang, H. He, Z. Zeng, Global synchronization of fuzzy memristive neural networks with discrete and distributed delays, IEEE Trans. Fuzzy Syst., 28 (2020), 2022–2034. https://doi.org/10.1109/TFUZZ.2019.2930032 doi: 10.1109/TFUZZ.2019.2930032 |
[22] | S. G. Nersesov, W. M. Perruquetti, Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Anal. Hybrid Syst., 2 (2008), 832–845. https://doi.org/10.1016/j.nahs.2007.12.001 doi: 10.1016/j.nahs.2007.12.001 |
[23] | S. Wang, Z. Guo, S. Wen, T. Huang, S. Gong, Finite/fixed-time synchronization of delayed memristive reaction-diffusion neural networks, Neurocomputing, 375 (2020), 1–8. https://doi.org/10.1016/j.neucom.2019.06.092 doi: 10.1016/j.neucom.2019.06.092 |
[24] | X. Yang, X. Li, P. Duan, Finite-time lag synchronization for uncertain complex networks involving impulsive disturbances, Neural Comput. Appl., 34 (2022), 5097–5106. https://doi.org/10.1007/s00521-021-05987-8 doi: 10.1007/s00521-021-05987-8 |
[25] | C. Zhou, C. Wang, Y. Sun, W. Yao, H. Lin, Cluster output synchronization for memristive neural networks, Inf. Sci., 589 (2022), 459–477. https://doi.org/10.1016/j.ins.2021.12.084 \newpage doi: 10.1016/j.ins.2021.12.084 |
[26] | L. Duan, J. Liu, C. Huang, Z. Wang, Finite-/fixed-time anti-synchronization of neural networks with leakage delays under discontinuous disturbances, Chaos Solitons Fractals, 155 (2022), 111639. https://doi.org/10.1016/j.chaos.2021.111639 doi: 10.1016/j.chaos.2021.111639 |
[27] | L. Duan, M. Shi, C. Huang, X. Fang, Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations, Chaos Solitons Fractals, 142 (2021), 110386. https://doi.org/10.1016/j.chaos.2020.110386 doi: 10.1016/j.chaos.2020.110386 |
[28] | R. Sakthivel, N. Aravinth, C. Aouiti, K. Arumugam, Finite-time synchronization of hierarchical hybrid coupled neural networks with mismatched quantization, Neural Comput. Appl., 33 (2021), 16881–16897. https://doi.org/10.1007/s00521-021-06049-9 doi: 10.1007/s00521-021-06049-9 |
[29] | Y. Fan, X. Huang, Y. Li, J. Xia, G. Chen, Aperiodically intermittent control for quasi-synchronization of delayed memristive neural networks: an interval matrix and matrix measure combined method, IEEE Trans. Syst. Man Cybern. Syst., 49 (2018), 2254–2265. https://doi.org/10.1109/TSMC.2018.2850157 doi: 10.1109/TSMC.2018.2850157 |
[30] | L. Wang, Z. Zeng, M. Ge, A disturbance rejection framework for finite-time and fixed-time stabilization of delayed memristive neural networks, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 905–915. https://doi.org/10.1109/TSMC.2018.2888867 doi: 10.1109/TSMC.2018.2888867 |
[31] | X. Liu, D. W. C. Ho, Q. Song, J. Cao, Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances, Nonlinear Dyn., 90 (2017), 2057–2068. https://doi.org/10.1007/s11071-017-3782-9 doi: 10.1007/s11071-017-3782-9 |
[32] | L. C. Evans, Partial Differential Equations, Providence, RI, USA: American Mathematical Society, 1998. |
[33] | Z. Chen, X. Fu, D. Zhao, Anti-periodic mild attractor of delayed hopfield neural networks systems with reaction-diffusion terms, Neurocomputing, 99 (2013), 372–380. https://doi.org/10.1016/j.neucom.2012.07.022 doi: 10.1016/j.neucom.2012.07.022 |
[34] | G. Hardy, J. Littlewood, G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1988. |