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Abstract: In this paper, the problem on finite-/fixed-time synchronization (FFTS) is investigated
for a class of diffusive Hopfield neural networks with leakage and discrete delays. Some new and
useful criteria independent on time delays but dependent on the diffusion coefficients are established
to guarantee the FFTS for the addressed network model under a unified framework. In sharp contrast
to the existed results which can only finite-timely or fixed-timely synchronize the systems with both
diffusion effects and leakage delays, the theoretical results of this paper are more general and practical.
Finally, a numerical example is presented to show the effectiveness of the proposed control methods.
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1. Introduction

In the past four decades, Hopfield neural networks (HNNs), were firstly proposed by Hopfield [1,2],
have drawn much attention and in-depth research since their potential applications in many fields such
as object recognition [3], signal and image processing [4], mathematical programming [5], etc. It is
widely recognized that these engineering applications rely heavily on the dynamic behaviors of neural
networks. Therefore, the study of their dynamics became a hot research topic and significant progress
has been made in recent years, see [6–8] and the references therein.

In the hardware implementation of neural networks, however, time delays are inevitable since the
finite switching speed of amplifiers, and a neural network has much more complicated dynamics due
to the incorporation of time delays. For example, it has been shown that oscillation and bifurcation
phenomena will appear when a discrete delay was introduced into HNNs [9, 10], which are of great
significance to practical applications of neural networks. Particularly, in a real nervous system, there
perpetually encounters a representative time delay, which is essentially different from the conventional
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delays, named leakage delay, and it broadly exists in the negative feedback terms of the system which
are identified as leakage terms, the leakage delay is usually incorporated in the study of network mod-
eling, such a type of time delay often has a tendency to destabilize the neural networks and is difficult
to handle [11]. Nevertheless, just as the traditional time delays, the leakage delay also has great influ-
ence on the dynamics of many different kinds of NNs, see, e.g., [12–16]. On the other hand, diffusion
phenomenon inevitably appears in NNs and electric circuits once electrons transmit in a inhomoge-
neous electromagnetic field, which means that the whole structure and dynamic behavior of NNs are
not only dependent on the time evolution but also on the spatial location [17, 18]. Therefore, it is of
great importance and significance to investigate the dynamics of leakage and discrete delayed HNNs
with diffusion effects.

Synchronization, as an important class of neurodynamics, has been extensively studied since its
potential applications in such as secure communication [19], image processing [20] and so on. Among
many control strategies in practical applications, finite-time and fixed-time control is an important
and effective tool to realize synchronization of network systems, and it is shown that such a control
technique has better robustness and disturbance rejection properties [22]. Because of these merits,
the finite-/fixed-time synchronization problem of kinds of neural networks has been deeply studied in
recent years (see for example, [23–30] and the references therein). It is notable, however, that few
works have considered simultaneously the leakage delay, discrete delay and diffusion effects in FFTS
dynamics of neural networks under consideration.

Motivated by the above discussions, we study the FFTS problem of leakage and discrete delayed
HNNs with diffusion effects. Firstly, based on the finite-/fixed-time convergence theorem, a novel neg-
ative exponential state feedback controller is designed. Then, by applying the inequality technique, and
Lyapunov-Krasovskii functional method, some new sufficient conditions are established to realize the
FFTS for the considered network model. Finally, a numerical example is given to verify the theoretical
results established in this paper.

The plan of the paper is organized as follows. In Section 2, the model description and some nec-
essary preliminaries are presented. Section 3 is devoted to designing a negative exponential controller
and the FFTS criteria are established. In Section 4, a numerical example is given to illustrate the
effectiveness of the obtained results. Finally, a brief conclusion is drawn in Section 5.

2. Model description and preliminaries

In this paper, we are interested in the following diffusive Hopfield neural networks with leakage and
discrete delays:

∂ui(t, x)
∂t

=

m∑
k=1

Dik
∂2ui(t, x)
∂x2

k

− aiui(t − σ, x) +
n∑

j=1

bi j f j(u j(t, x)) +
n∑

j=1

ci jg j(u j(t − τ, x))

+ Ii, i, j = 1, 2, ..., n, (2.1)

where n is the number of neurons in the networks, x = (x1, x2, ..., xm)T ∈ Ω is the space vector,
in which Ω ⊆ Rm represents a bounded set with smooth boundary ∂Ω, and mes Ω > 0 means the
measure of Ω; ui(t, x) denotes the state of ith neuron at time t and in space x, Dik ≥ 0 represents the
transmission diffusion coefficient along the ith neuron; σ and τ, respectively, stand for the leakage
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delay and transmission delay; ai > 0 indicates the rate with which the ith neuron will reset its potential
to the resting state in isolation when disconnected from the networks and external inputs; bi j is the
strength of the jth neuron on the ith neuron at time t and in space x; ci j is the strength of the jth
neuron on the ith neuron at time t− τ and in space x; f j(·) and g j(·), respectively, denotes the activation
functions of the jth neuron without and with the time delay, and Ii denotes a constant external input.

As for system (2.1), the initial-boundary value conditions are supplemented with

ui(s, x) = φi(s, x), (s, x) ∈ [−max{σ, τ}, 0] ×Ω,

and
ui(t, x) = 0, (t, x) ∈ [−max{σ, τ},∞) × ∂Ω, (2.2)

in which φi ∈ C([−max{σ, τ}, 0]×Ω,R) representing the Banach space of continuous functions defined
on the region [−max{σ, τ}, 0] ×Ω, i = 1, 2, ..., n.

To achieve the FFTS goal, we refer to system (2.1) as the drive system, the response system is given
as follows:

∂vi(t, x)
∂t

=

m∑
k=1

Dik
∂2vi(t, x)
∂x2

k

− aivi(t − σ, x) +
n∑

j=1

bi j f j(v j(t, x)) +
n∑

j=1

ci jg j(v j(t − τ, x))

+ Ii + Ui(t, x), (2.3)

where vi(t, x) represents the response state, Ui(t, x) means the control input. Associated with (2.3), the
initial-boundary value conditions are shown as follows:

vi(s, x) = ϕi(s, x), (s, x) ∈ [−max{σ, τ}, 0] ×Ω,

and
vi(t, x) = 0, (t, x) ∈ [−max{σ, τ},∞) × ∂Ω, (2.4)

in which ϕi ∈ C([−max{σ, τ}, 0] ×Ω,R), i = 1, 2, ..., n.
Denote ei(t, x) = vi(t, x)−ui(t, x), and then subtract (2.1) from (2.3), we deduce that the error system

can be written as follows:

∂ei(t, x)
∂t

=

m∑
k=1

Dik
∂2ei(t, x)
∂x2

k

− aiei(t − σ, x) +
n∑

j=1

bi j
(
f j(v j(t, x)) − f j(u j(t, x))

)
+

n∑
j=1

ci j
(
g j(v j(t − τ, x)) − g j(u j(t − τ, x))

)
+ Ui(t, x). (2.5)

In view of (2.2) and (2.4), the initial-boundary value conditions of system (2.5) are equipped as follows:

ei(s, x) = ϕi(s, x) − φi(s, x), (s, x) ∈ [−max{σ, τ}, 0] ×Ω.

and
ei(t, x) = 0, (t, x) ∈ [−max{σ, τ},∞) × ∂Ω, (2.6)

We are now in a position to give some preliminary preparations.
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Definition 2.1. If for a suitable designed controller and any initial state ei(s, x) = ϕi(s, x)−φi(s, x), s ∈
[−max{σ, τ}, 0], there is a time T that depends (or does not depend) on the initial values such that

lim
t→T
|ei(t, x)| = 0,

and
|ei(t, x)| ≡ 0, for t ≥ T, i = 1, 2, ..., n.

Then the drive system (2.1) and response system (2.3) are said to achieve finite-time (or fixed-time)
synchronization.

Lemma 1 (see [31]). Suppose that V(x) : Rn → R is a C-regular, positive definite and radially
unbounded function and x(·) : [0,∞) → Rn is absolutely continuous on any compact subinterval of
[0,∞). Let K (V) = k1Vα + k2Vβ satisfy

d
dt

V(t) ≤ −K (V)

and

T =

∫ V(0)

0

1
K (σ)

dσ < ∞.

Then,

1) if 0 ≤ α, β < 1, V(t) will reach zero in a finite time and the settling time is bounded by T ≤
min

{
V1−α(0)
k1(1−α) ,

V1−β(0)
k2(1−β)

}
;

2) if α > 1, 0 ≤ β < 1, V(t) will reach zero in a fixed time and the settling time is bounded by
T ≤ 1

k1

1
α−1 +

1
k2

1
1−β .

Lemma 2 (Poincaré’s inequality, see [32]). Suppose that u(x) ∈ H1
0(Ω), then we have the following

inequality ∫
Ω

u2(x)dx ≤ η
∫
Ω

m∑
k=1

( ∂u
∂xk

)2dx,

where η is a constant independent of u, and H1
0(Ω) is a Sobolev space expressed by

H1
0(Ω) =

{
u|u ∈ L2,

∂u
∂xk
∈ L2, u|∂Ω = 0, 1 ≤ k ≤ m

}
.

Remark 2.1. As pointed out by Chen et al. in [33], the constant η can be calculated as follows: η = d2,
where

d = min
1≤k≤m

{
dk = sup{|xk − yk|}, for any (x1, ..., xm), (y1, ..., ym) ∈ Ω

}
.

Lemma 3 (see [34]). If a1, a2, ..., an are positive numbers and 0 < r < p, then( n∑
i=1

ap
i

) 1
p

≤

( n∑
i=1

ar
i

) 1
r

≤ n
1
r −

1
p

( n∑
i=1

ap
i

) 1
p

.

To realize the FFTS, the following assumption is given.

Assumption 1. For any u, v ∈ R, there exist positive constants p j and q j, such that

| f j(v) − f j(u)| ≤ p j|v − u|, |g j(v) − g j(u)| ≤ q j|v − u|, j = 1, 2, ..., n.
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3. Main results

In this section, the FFTS problem of drive-response systems (2.1)–(2.3) is discussed under a unified
framework and the corresponding sufficient criteria are established.

Firstly, we design the controller by

Ui(t, x) =


− λ1iei(t, x) −

ei(t, x)
∥e(t, ·)∥22

n∑
i=1

2
[
Eαi (t) + E

1
2
i (t)

]
− λ2iei(t, x)

[
∥e(t, ·)∥2α−2

2

+ ∥e(t, ·)∥−1
2

]
, if ∥e(t, ·)∥ , 0,

0, if ∥e(t, ·)∥ = 0,

(3.1)

where

Ei(t) =
∫
Ω

max
t−max{σ,τ}≤s≤t

e2
i (s, x)dx, ∥e(t, ·)∥2 =

( ∫
Ω

n∑
i=1

|ei(t, x)|2dx
) 1

2

,

and λ1i, λ2i > 0 are feedback control parameters to be determined, i = 1, 2, ..., n.
Our main result can be stated as follows.

Theorem 3.1. Suppose that Assumption 1 holds. If the control parameters in (3.1) satisfy

λ1i ≥ −
Di

η
+ ai +

1
2

n∑
j=1

(
|bi j|p j + |b ji|pi + |ci j|q j + |c ji|qi

)
, (3.2)

where
Di = min

1≤k≤m
{Dik}.

Then, (I) the drive-response systems (2.1) and (2.3) can achieve finite-time synchronization when 0 <
α < 1; (II) the drive-response systems (2.1) and (2.3) can achieve fixed-time synchronization when
α > 1.

Proof. Define a Lyapunov-Krasovskii functional as follows:

V(t) = V1(t) + V2(t) + V3(t) (3.3)

with

V1(t) =
n∑

i=1

∫
Ω

e2
i (t, x)dx, V2(t) =

n∑
i=1

∫
Ω

∫ t

t−σ
aie2

i (s, x)dsdx,

and

V3(t) =
n∑

i=1

n∑
j=1

∫
Ω

∫ t

t−τ
|c ji|qie2

i (s, x)dsdx.

We differentiate V(t) along solutions of system (2.5), and obtain from Assumption 1 that

d
dt

V(t) =
∫
Ω

[
2

n∑
i=1

ei(t, x)
∂ei(t, x)
∂t

+

n∑
i=1

ai
(
e2

i (t, x) − e2
i (t − σ, x)

)
Electronic Research Archive Volume 31, Issue 7, 4088–4101.
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+

n∑
i=1

n∑
j=1

|c ji|qi
(
e2

i (t, x) − e2
i (t − τ, x)

)]
dx

=

∫
Ω

{
2

n∑
i=1

ei(t, x)
[ m∑

k=1

Dik
∂2ei(t, x)
∂x2

k

− aiei(t − σ, x) +
n∑

j=1

bi j
(
f j(v j(t, x)) − f j(u j(t, x))

)
+

n∑
j=1

ci j
(
g j(v j(t − τ, x)) − g j(u j(t − τ, x))

)
+ Ui

]
+

n∑
i=1

ai
(
e2

i (t, x) − e2
i (t − σ, x)

)
+

n∑
i=1

n∑
j=1

|c ji|qi
(
e2

i (t, x) − e2
i (t − τ, x)

)}
dx

≤

∫
Ω

2
n∑

i=1

ei(t, x)
m∑

k=1

Dik
∂2ei(t, x)
∂x2

k

dx +
∫
Ω

[
2

n∑
i=1

ai|ei(t, x)||ei(t − σ, x)|

+ 2
n∑

i=1

n∑
j=1

|bi j|p j|ei(t, x)||e j(t, x)| + 2
n∑

i=1

n∑
j=1

|ci j|q j|ei(t, x)||e j(t − τ, x)|

− 2
n∑

i=1

λ1ie2
i (t, x) +

n∑
i=1

aie2
i (t, x) +

n∑
i=1

n∑
j=1

|c ji|qie2
i (t, x) −

n∑
i=1

aie2
i (t − σ, x)

−

n∑
i=1

n∑
j=1

|c ji|qie2
i (t − τ, x)

]
dx − 4

n∑
i=1

[
Eαi (t) + E

1
2
i (t)

]
− 2 min

1≤i≤n
{λ2i}

(
∥e(t, ·)∥2α2 + ∥e(t, ·)∥2

)
, (3.4)

Recalling from Lemma 2, we have∫
Ω

2
n∑

i=1

ei(t, x)
m∑

k=1

Dik
∂2ei(t, x)
∂x2

k

dx

= −

∫
Ω

2
n∑

i=1

m∑
k=1

Dik

(
∂ei(t, x)
∂xk

)2

dx

≤ − 2
n∑

i=1

Di

η

∫
Ω

e2
i (t, x)dx. (3.5)

On the other hand, one can easily deduce that

2
n∑

i=1

ai|ei(t, x)||ei(t − σ, x)| ≤
n∑

i=1

ai
(
e2

i (t, x) + e2
i (t − σ, x)

)
, (3.6)

2
n∑

i=1

n∑
j=1

|bi j|p j|ei(t, x)||e j(t, x)| ≤
n∑

i=1

n∑
j=1

|bi j|p j
(
e2

i (t, x) + e2
j(t, x)

)
=

n∑
i=1

n∑
j=1

(|bi j|p j + |b ji|pi)e2
i (t, x) (3.7)
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and

2
n∑

i=1

n∑
j=1

|ci j|q j|ei(t, x)||e j(t − τ, x)| ≤
n∑

i=1

n∑
j=1

|ci j|q j
(
e2

i (t, x) + e2
j(t − τ, x)

)
=

n∑
i=1

n∑
j=1

|ci j|q je2
i (t, x) +

n∑
i=1

n∑
j=1

|c ji|qie2
i (t − τ, x). (3.8)

Therefore, substituting (3.5)–(3.8) into (3.4), we deduce from (3.2) that

d
dt

V(t) ≤
∫
Ω

n∑
i=1

(
−

2Di

η
+ 2ai +

n∑
j=1

(
|bi j|p j + |b ji|pi + |ci j|q j + |c ji|qi

)
− 2λ1i

)
e2

i (t, x)dx

− 4
n∑

i=1

[
Eαi (t) + E

1
2
i (t)

]
− 2 min

1≤i≤n
{λ2i}

(
∥e(t, ·)∥2α2 + ∥e(t, ·)∥2

)
≤ − 4

n∑
i=1

[
Eαi (t) + E

1
2
i (t)

]
− 2 min

1≤i≤n
{λ2i}

(
Vα1 (t) + V

1
2

1 (t)
)
. (3.9)

Case I: When 0 < α < 1, with the definition of Ei(t) and Lemma 3, we can see that

− 4
n∑

i=1

[
Eαi (t) + E

1
2
i (t)

]
≤ − 2

n∑
i=1

[( 1
σ

∫
Ω

∫ t

t−σ
e2

i (s, x)dsdx
)α
+

(1
τ

∫
Ω

∫ t

t−τ
e2

i (s, x)dsdx
)α

+

( 1
σ

∫
Ω

∫ t

t−σ
e2

i (s, x)dsdx
) 1

2

+

(1
τ

∫
Ω

∫ t

t−τ
e2

i (s, x)dsdx
) 1

2
]

≤ −
2
σα

( n∑
i=1

∫
Ω

∫ t

t−σ
e2

i (s, x)dsdx
)α
−

2
√
σ

( n∑
i=1

∫
Ω

∫ t

t−σ
e2

i (s, x)dsdx
) 1

2

−
2
τα

( n∑
i=1

∫
Ω

∫ t

t−τ
e2

i (s, x)dsdx
)α
−

2
√
τ

( n∑
i=1

∫
Ω

∫ t

t−τ
e2

i (s, x)dsdx
) 1

2

≤ −
2

(γ1σ)α
Vα2 (t) −

2
√
γ1σ

V
1
2

2 (t) −
2

(γ2τ)α
Vα3 (t) −

2
√
γ2τ

V
1
2

3 (t), (3.10)

where

γ1 =
1

max
1≤i≤n
{ai}
, γ2 =

1
max
1≤i≤n

{ ∑
1≤ j≤n
|c ji|qi

} .
Putting (3.10) into (3.9), it follows that

d
dt

V(t) ≤ −
2

(γ1σ)α
Vα2 (t) −

2
√
γ1σ

V
1
2

2 (t) −
2

(γ2τ)α
Vα3 (t) −

2
√
γ2τ

V
1
2

3 (t)

− 2 min
1≤i≤n
{λ2i}

(
Vα1 (t) + V

1
2

1 (t)
)
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≤ − 2 min
{

min
1≤i≤n
{λ2i}, (γ1σ)−α, (γ1σ)−

1
2 , (γ2τ)−α, (γ2τ)−

1
2
}(

Vα(t) + V
1
2 (t)

)
. (3.11)

Based on Case I in Lemma 1, we arrive at the conclusion that systems (2.1)–(2.3) can achieve the
finite-time synchronization and the settling time is exactly estimated by

T1 =

∫ V(0)

0

1

2 min
{

min
1≤i≤n
{λ2i}, (γ1σ)−α, (γ1σ)−

1
2 , (γ2τ)−α, (γ2τ)−

1
2
}(

Vα + V
1
2
)dV

≤min
{
V

1
2 (0),

V1−α(0)
2 − 2α

} 1

min
{

min
1≤i≤n
{λ2i}, (γ1σ)−α, (γ1σ)−

1
2 , (γ2τ)−α, (γ2τ)−

1
2
} . (3.12)

Case II: When α > 1, a similar procedure as applied to derive (3.10) gives

− 4
n∑

i=1

[
Eαi (t) + E

1
2
i (t)

]
≤ − 2

n∑
i=1

[( 1
σ

∫
Ω

∫ t

t−σ
e2

i (s, x)dsdx
)α
+

(1
τ

∫
Ω

∫ t

t−τ
e2

i (s, x)dsdx
)α

+

( 1
σ

∫
Ω

∫ t

t−σ
e2

i (s, x)dsdx
) 1

2

+

(1
τ

∫
Ω

∫ t

t−τ
e2

i (s, x)dsdx
) 1

2
]

≤ −
2n1−α

σα

( n∑
i=1

∫
Ω

∫ t

t−σ
e2

i (s, x)dsdx
)α
−

2
√
σ

( n∑
i=1

∫
Ω

∫ t

t−σ
e2

i (s, x)dsdx
) 1

2

−
2n1−α

τα

( n∑
i=1

∫
Ω

∫ t

t−τ
e2

i (s, x)dsdx
)α
−

2
√
τ

( n∑
i=1

∫
Ω

∫ t

t−τ
e2

i (s, x)dsdx
) 1

2

≤ −
2n1−α

(γ1σ)α
Vα2 (t) −

2
√
γ1σ

V
1
2

2 (t) −
2n1−α

(γ2τ)α
Vα3 (t) −

2
√
γ2τ

V
1
2

3 (t). (3.13)

Substituting (3.13) into (3.9), we find from Lemma 3 that

d
dt

V(t) ≤ − 4
n∑

i=1

[
Eαi (t) + E

1
2
i (t)

]
− 2 min

1≤i≤n
{λ2i}

(
Vα1 (t) + V

1
2

1 (t)
)

≤ − 2 min
{
31−α min

1≤i≤n
{λ2i},

3n
(3nγ1σ)α

, (γ1σ)−
1
2 ,

3n
(3nγ2τ)α

, (γ2τ)−
1
2

}(
Vα(t) + V

1
2 (t)

)
.

According to Case II in Lemma 1, it follows that the response system (2.3) can fixed-timely syn-
chronize to the drive system (2.1). Moreover, the settling time can be precisely bounded by

T2 =

∫ V(0)

0

1

2 min
{
31−α min

1≤i≤n
{λ2i},

3n
(3nγ1σ)α , (γ1σ)−

1
2 , 3n

(3nγ2τ)α
, (γ2τ)−

1
2

}(
Vα + V

1
2
)dV

≤
2α − 1

2(α − 1) min
{
31−α min

1≤i≤n
{λ2i},

3n
(3nγ1σ)α , (γ1σ)−

1
2 , 3n

(3nγ2τ)α
, (γ2τ)−

1
2

} . (3.14)

This ends the proof of Theorem 3.1.
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Remark 3.1. It is readily seen from (3.12) and (3.14) that the settling time is closely related not
only to the controller parameters but also to the leakage and discrete delays, the finite or fixed time
synchronization goal can be realized by adjusting the related parameters flexibly. One the other side,
the synchronization criteria established in this paper are independent on the leakage and discrete delays,
which are easier to check than the delay dependent ones. Therefore, the obtained theoretical results
show that the control parameters and time delays including both leakage and discrete delys affect the
synchronization mechanism from different aspects.
Remark 3.2. In [23, 25, 27, 28], the authors considered other types of neural networks with diffusion
effects, some novel criteria have been established to realize the FFTS synchronization, but the leakage
delay is not considered. In [27], by designing new negative exponential controllers, the finite-/fixed-
time anti-synchronization problem of discontinuous neural networks with leakage delays is well stud-
ied. Unfortunately, the diffusion effects are still not considered. As we all know that network system
with a diffusion term can be described by a partial differential equations which is a infinite dimensional
dynamical system, which undoubtedly increases the complexity of the model. On the other hand, the
leakage delay in negative feedback term also enhances the nonlinearity of the model itself, these un-
doubtedly bring many theoretical difficulties. To the best of our knowledge, there is no research on
FFTS of neural networks considering both diffusion and delay effects until now. Thus, the obtained
theoretical results are completely new and can be seen as a continuation work of the aforementioned
references.

4. A numerical example

In this section, we provide an example and its numerical simulations to support the theoretical result.
Example 4.1. For n = 2, m = 1, the parameters of the drive-response systems (2.1)–(2.3) are cho-

sen as follows: A = diag(a1, a2) =
(

0.2 0
0 0.4

)
, B = (bi j)2×2 =

(
3.12 −2.34
−4.2 −1.68

)
,C = (ci j)2×2 =(

−2.1 1.4
−3.2 2.6

)
,D1 = 0.15, D2 = 0.35, and I1 = 1, I2 = −1, σ = 0.5, τ = 0.2.

To realize the FFTS between the drive-response systems (2.1)–(2.3), we design the following feed-
back controllers: 

U1(t, x) = −λ11e1(t, x) − e1(t,x)
∥e(t,·)∥22

2∑
i=1

2
[
Eαi (t) + E

1
2
i (t)

]
−λ21e1(t, x)

[
∥e(t, ·)∥2α−2

2 + ∥e(t, ·)∥−1
2

]
,

U2(t, x) = −λ12e2(t, x) − e2(t,x)
∥e(t,·)∥22

2∑
i=1

2
[
Eαi (t) + E

1
2
i (t)

]
−λ22e2(t, x)

[
∥e(t, ·)∥2α−2

2 + ∥e(t, ·)∥−1
2

]
.

(4.1)

Case I (Finite-time synchronization):
Let Ω = [−8, 8], and choose the following activation functions

f j(z) = 0.3 tanh(z) + 0.7 sin(z), g j(z) = 1.6z.

Clearly, f j(·) and g j(·) satisfy Assumption 1 with p j = 1, q j = 1.6, j = 1, 2.
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Since Ω = [−8, 8], we obtain η = 4. Choosing λ11 = 15, λ12 = 15, λ21 = 1, λ22 = 1, α = 0.5 in
(4.1), we have

λ11 = 15 ≥ −
D1

η
+ a1 +

1
2

2∑
j=1

(|b1 j|p j + |b j1|p1 + |c1 j|q j + |c j1|q1) = 13.5925,

λ12 = 15 ≥ −
D2

η
+ a2 +

1
2

2∑
j=1

(|b2 j|p j + |b j2|p2 + |c2 j|q j + |c j2|q2) = 13.1025.

From Theorem 3.1, we can conclude that error system (2.5) is finite-time stable, and thus, the drive
system (2.1) and response system (2.3) realize the finite-time synchronization under the designed con-
troller (4.1) with α = 0.5.
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Figure 1. Spatiotemporal evolution trajectories of ei(t, x) of Case I in Example 4.1
under the initial conditions: u1(t, x) = −2.4 cos(5πx

16 ), u2(t, x) = 0.6 sin(πx
4 ), v1(t, x) =

3.7 cos(5πx
16 ), v2(t, x) = −1.9 sin(πx

4 ), (t, x) ∈ [−0.5, 0] × [−8, 8], i = 1, 2.

The spatiotemporal evolution trajectories of the error system are shown in Figure 1, which strongly
support the desired finite-time synchronization results.
Case II (Fixed-time synchronization):

Take activation functions as follows:

f j(z) = |z + 1| − |z − 1|, g j(z) = 2.5 arctan(z).

It is easy to verify that Assumption 1 is satisfied with p j = 2, q j = 2.5, j = 1, 2.
Let Ω = [−9

2 ,
9
2 ] and design the controller (4.1) with λ11 = 25, λ12 = 24, λ21 = 1, λ22 = 1, α = 1.5.

By simple calculation, we obtain

λ11 = 25 ≥ −
D1

η
+ a1 +

1
2

2∑
j=1

(|b1 j|p j + |b j1|p1 + |c1 j|q j + |c j1|q1) = 23.93,

λ12 = 24 ≥ −
D2

η
+ a2 +

1
2

2∑
j=1

(|b2 j|p j + |b j2|p2 + |c2 j|q j + |c j2|q2) ≈ 22.43.
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It has been verified that all of the conditions in Theorem 3.1 are valid. Then the fixed-time synchro-
nization can be realized for systems (2.1) and (2.3) under the feedback controller (4.1). Simulation
results of the error system are shown in Figure 2, which demonstrate that the synchronization errors
e1(t, x) and e2(t, x) converge to zero in a fixed time.

-6

5

-4

-2

0.2

0

e
1
(t

,x
)

2

0.15

x

0

4

t

6

0.1

0.05
-5 0

-6

5

-4

-2

0.2

0

e
2
(t

,x
)

2

0.15

x

0

4

t

6

0.1

0.05
-5 0

Figure 2. Spatiotemporal evolution trajectories of ei(t, x) of Case II in Example 4.1 un-
der the initial conditions: u1(t, x) = −2.57 sin(2πx), u2(t, x) = 1.28 cos(πx

3 ), v1(t, x) =
3.46 cos(πx

3 ), v2(t, x) = −4.35 sin(2πx), (t, x) ∈ [−0.5, 0] × [−9
2 ,

9
2 ], i = 1, 2.

5. Conclusions

In this paper, we studied the FFTS problem for leakage and discrete delayed HNNs with diffusions.
By designing a novel negative exponential state feedback controller and constructing a Lyapunov-
Krasovskii functional, and then by the aid of finite-/fixed-time convergence theorem, we obtained
some novel and useful FFTS criteria under a unified framework, which can ensure the FFTS of the
considered systems. Moreover, a numerical example is given to support the effectiveness and feasibility
of the proposed approach. Compared with the asymptotical or exponential synchronization results on
the leakage delayed NNs with diffusion effects, the established results greatly shorten the convergence
time and hence have a better applicability. In the future work, we intend to study the dynamic behaviors
of other kinds of network models such discontinuous HNNs or stochastic HNNs with leakage and
diffusive effects.
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