Research article Special Issues

Multiplicity of solutions for a fractional Schrödinger-Poisson system without (PS) condition

  • Received: 22 January 2021 Accepted: 02 June 2021 Published: 17 June 2021
  • MSC : 35J20, 35A01, 58E05

  • In this paper, we study the following fractional Schrödinger-Poisson system

    $ \begin{equation*} \begin{cases} (-\Delta)^su+V(x)u+\phi u = f(x, u)& x\in\mathbb{R}^3, \\ (-\Delta)^s\phi = u^2& x\in\mathbb{R}^3. \end{cases} \end{equation*} $

    Using the variant fountain theorem introduced by Zou [32], we get the existence of infinitely many large energy solutions without the Ambrosetti-Rabinowitz's 4-superlinearity condition. Recent results from the literature are extended and improved.

    Citation: Tiankun Jin. Multiplicity of solutions for a fractional Schrödinger-Poisson system without (PS) condition[J]. AIMS Mathematics, 2021, 6(8): 9048-9058. doi: 10.3934/math.2021525

    Related Papers:

  • In this paper, we study the following fractional Schrödinger-Poisson system

    $ \begin{equation*} \begin{cases} (-\Delta)^su+V(x)u+\phi u = f(x, u)& x\in\mathbb{R}^3, \\ (-\Delta)^s\phi = u^2& x\in\mathbb{R}^3. \end{cases} \end{equation*} $

    Using the variant fountain theorem introduced by Zou [32], we get the existence of infinitely many large energy solutions without the Ambrosetti-Rabinowitz's 4-superlinearity condition. Recent results from the literature are extended and improved.



    加载中


    [1] A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257–274. doi: 10.1007/s00032-008-0094-z
    [2] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. doi: 10.1016/0022-1236(73)90051-7
    [3] V. Ambrosio, An existence result for a fractional Kirchhoff-Schrödinger-Poisson system, Z. Angew. Math. Phys., 69 (2018), 1–30. doi: 10.1007/s00033-017-0895-4
    [4] A. Azzollini, Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differential Equations, 249 (2010), 1746–1763. doi: 10.1016/j.jde.2010.07.007
    [5] A. Azzollini, P. d'Avenia, A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779–791. doi: 10.1016/j.anihpc.2009.11.012
    [6] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283–293. doi: 10.12775/TMNA.1998.019
    [7] C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, volume 20 of Lecture Notes of the Unione Matematica Italiana, Springer, 2016.
    [8] G. Cerami, G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521–543. doi: 10.1016/j.jde.2009.06.017
    [9] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004
    [10] R. C. Duarte, M. A. S. Souto, Fractional Schrödinger-Poisson equations with general nonlinearities, Electron. J. Differential Equations, 319 (2016), 1–19.
    [11] A. Fiscella, P. Pucci, B. Zhang, $p$-fractional Hardy-Schrödinger-Kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal., 8 (2019), 1111–1131.
    [12] Y. Jiang, H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582–608. doi: 10.1016/j.jde.2011.05.006
    [13] T. Jin, Z. Yang, The fractional Schrödinger-Poisson systems with infinitely many solutions, J. Korean Math. Soc., 57 (2020), 489–506.
    [14] N. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972.
    [15] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305. doi: 10.1016/S0375-9601(00)00201-2
    [16] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E (3), 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108
    [17] K. Li, Existence of non-trivial solutions for nonlinear fractional Schrödinger-Poisson equations, Appl. Math. Lett., 72 (2017), 1–9. doi: 10.1016/j.aml.2017.03.023
    [18] P. L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 109 (1987), 33–97. doi: 10.1007/BF01205672
    [19] J. Liu, C. Ji, Concentration results for a magnetic Schrödinger-Poisson system with critical growth, Adv. Nonlinear Anal., 10 (2021), 775–798.
    [20] X. Mingqi, V. D. Rădulescu, B. Zhang, Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities, ESAIM Control Optim. Calc. Var., 24 (2018), 1249–1273. doi: 10.1051/cocv/2017036
    [21] G. Molica Bisci, V. D. Radulescu, R. Servadei, Variational methods for nonlocal fractional problems, volume 162 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2016, With a foreword by Jean Mawhin.
    [22] L. Shen, Existence result for fractional Schrödinger-Poisson systems involving a Bessel operator without Ambrosetti-Rabinowitz condition, Comput. Math. Appl., 75 (2018), 296–306. doi: 10.1016/j.camwa.2017.09.011
    [23] K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $\Bbb R^N$, Nonlinear Anal., 21 (2015), 76–86. doi: 10.1016/j.nonrwa.2014.06.008
    [24] K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 261 (2016), 3061–3106. doi: 10.1016/j.jde.2016.05.022
    [25] M. Willem, Minimax theorems, Birkhäuser Boston, Inc., Boston, MA, 1996.
    [26] Z. Yang, Y. Yu, F. Zhao, The concentration behavior of ground state solutions for a critical fractional Schrödinger-Poisson system, Math. Nachr., 292 (2019), 1837–1868. doi: 10.1002/mana.201700398
    [27] Z. Yang, Y. Yu, F. Zhao, Concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system involving critical exponent, Commun. Contemp. Math., 21 (2019), 1–46.
    [28] Z. Yang, W. Zhang, F. Zhao, Existence and concentration results for fractional Schrödinger-Poisson system via penalization method, Electron. J. Differential Equations, 14 (2021), 1–31.
    [29] Y. Yu, F. Zhao, L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differential Equations, 56 (2017), 1–25. doi: 10.1007/s00526-016-1094-4
    [30] Y. Yu, F. Zhao, L. Zhao, The existence and multiplicity of solutions of a fractional Schrödinger-Poisson system with critical growth, Sci. China Math., 61 (2018), 1039–1062. doi: 10.1007/s11425-016-9074-6
    [31] L. Zhao, H. Liu, F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential Equations, 255 (2013), 1–23. doi: 10.1016/j.jde.2013.03.005
    [32] W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343–358. doi: 10.1007/s002290170032
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2242) PDF downloads(103) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog