In the article, we present the sharp upper and lower bounds for the arithmetic mean in terms of new Seiffert-like means, which give some refinements of the results obtained in [
Citation: Wei-Mao Qian, Tie-Hong Zhao, Yu-Pei Lv. Refinements of bounds for the arithmetic mean by new Seiffert-like means[J]. AIMS Mathematics, 2021, 6(8): 9036-9047. doi: 10.3934/math.2021524
In the article, we present the sharp upper and lower bounds for the arithmetic mean in terms of new Seiffert-like means, which give some refinements of the results obtained in [
[1] | M. Nowicka, A. Witkowski, Optimal bounds for the arithmetic mean in terms of new seiffert-like means, Math. Inequal. Appl., 23 (2020), 383–392. |
[2] | A. Witkowski, On Seiffert-like means, J. Math. Inequal., 9 (2015), 1071–1092. |
[3] | P. A. Hästö, Optimal inequalities between Seiffert mean and power means, Math. Inequal. Appl., 7 (2004), 47–53. |
[4] | Y.-M. Li, M.-K. Wang, Y.-M. Chu, Sharp power mean bounds for Seiffert mean, Appl. Math. J. Chin. Univ., 29 (2014), 101–107. doi: 10.1007/s11766-014-3008-6 |
[5] | E. Neuman, J. Sándor, On the Schwab-Borchardt mean, Math. Pannon., 14 (2003), 253–266. |
[6] | F. Burk, The Geometric, Logarithmic, and Arithmetic Mean Inequality, Amer. Math. Monthly, 94 (1987), 527–528. doi: 10.1080/00029890.1987.12000678 |
[7] | Z.-H. Yang, Three families of two-parameter means constructed by trigonometric functions, J. Inequal. Appl., 2013 (2013), 541. doi: 10.1186/1029-242X-2013-541 |
[8] | Z.-H. Yang, Y.-M. Chu, An optimal inequalities chain for bivariate means, J. Math. Inequal., 9 (2015), 331–343. |
[9] | Z.-H. Yang, Y.-M. Chu, Inequalities for certain means in two arguments, J. Inequal. Appl., 2015 (2015), 299. doi: 10.1186/s13660-015-0828-8 |
[10] | Z.-H. Yang, Y.-L. Jiang, Y.-Q. Song, Y.-M. Chu, Sharp inequalities for trigonometric functions, Abstr. Appl. Anal., 2014 (2014), 1–18. |
[11] | Y. Chu, B. Liu, M. Wang, Refinements of bounds for the first and second Seiffert means, J. Math. Inequal., 7 (2013), 659–668. |
[12] | Y. Chu, T. Zhao, B. Liu, Optimal bounds for Neuman-Sándor mean in terms of the convex combination of logarithmic and quadratic or contra-harmonic means, J. Math. Inequal., 8 (2014), 201–217. |
[13] | Y. Chu, T. Zhao, Y. Song, Sharp bounds for Neuman-Sándor mean in terms of the convex combination of quadratic and first Seiffert means, Acta Math. Sci., 34 (2014), 797–806. doi: 10.1016/S0252-9602(14)60050-3 |
[14] | T.-H. Zhao, M.-K. Wang, Y.-M. Chu, Monotonicity and convexity involving generalized elliptic integral of the first kind, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 115 (2021), 1–13. doi: 10.1007/s13398-020-00944-x |
[15] | T.-H. Zhao, Z.-Y. He, Y.-M. Chu, Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals, Comput. Meth. Funct. Th., (2020), 1–14. |
[16] | J.-J. Lei, J.-J. Chen, B.-Y. Long, Optimal bounds for the first Seiffert mean in terms of the convex combination of the logarithmic and Neuman-Sándor mean, J. Math. Inequal., 12 (2018), 365–377. |
[17] | Y.-X. Li, M. A. Ali, H. Budak, M. Abbas, Y.-M. Chu, A new generalization of some quantum integral inequalities for quantum differentiable convex functions, Adv. Differ. Equ., 2021 (2021), 1–15. doi: 10.1186/s13662-020-03162-2 |
[18] | Y.-X. Li, M. H. Alshbool, Y.-P. Lv, I. Khan, M. Riza Khan, A. Issakhov, Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface, Case Stud. Therm. Eng., 26 (2021), 100975. doi: 10.1016/j.csite.2021.100975 |
[19] | Y.-X. Li, T. Muhammad, M. Bilal, M. Altaf Khan, A. Ahmadian, B. A. Pansera, Fractional simulation for Darcy-Forchheimer hybrid nanoliquid flow with partial slip over a spinning disk, Alex. Eng. J., 60 (2021), 4787–4796. doi: 10.1016/j.aej.2021.03.062 |
[20] | Y.-X. Li, A. Rauf, M. Naeem, M. A. Binyamin, A. Aslam, Valency-based topological properties of linear hexagonal chain and hammer-like benzenoid, Complexity, 2021 (2021), 1–16. |
[21] | Y.-X. Li, F. Shan, M. Ijaz Khan, R. Chinram, Y. Elmasry, T.-C. Sun, Dynamics of Cattaneo-Christov double diffusion (CCDD) and arrhenius activation law on mixed convective flow towards a stretched Riga device, Chaos Solitons Fractals, 148 (2021), 111010. doi: 10.1016/j.chaos.2021.111010 |
[22] | F. Qi, W.-H. Li, A unified proof of several inequalities and some new inequalities involving Neuman-Sándor mean, Miskolc Math. Notes, 15 (2014), 665–675. doi: 10.18514/MMN.2014.1176 |
[23] | H. Sun, T. Zhao, Y. Chu, B. Liu, A note on the Neuman-Sándor mean, J. Math. Inequal., 8 (2014), 287–297. |
[24] | M. Nowicka, A. Witkowski, Optimal bounds for the tangent and hyperbolic sine means, Aequat. Math., 94 (2020), 817–827. |
[25] | M. Nowicka, A. Witkowski, Optimal bounds for the tangent and hyperbolic sine means II, J. Math. Inequal., 14 (2020), 23–33. |
[26] | H.-Z. Xu, W.-M. Qian, Optimal Bounds of the Arithmetic Mean by Harmonic, Contra-harmonic and New Seiffert-like Means, Asian Res. J. Math., 16 (2020), 30–36. |
[27] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, New York, 1997. |
[28] | M. Biernacki, J. Krzyz, On the monotonicity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Sklodowska, 9 (1955), 135–147. |
[29] | Z.-H. Yang, Y.-M. Chu, M.-K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587–604. doi: 10.1016/j.jmaa.2015.03.043 |
[30] | Z.-H. Yang, J.-F. Tian, Sharp inequalities for the generalized elliptic integrals of the first kind, Ramanujan J., 48 (2019), 91–116. doi: 10.1007/s11139-018-0061-4 |
[31] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 9th printing, Washington, 1970. |
[32] | F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math, 351 (2019), 1–5. |