In this paper, we consider a Cauchy problem of a coupled linearly-damped wave equations with nonlinear sources. In the whole space, we establish the local existence and show that there are solutions with negative initial energy that blow up in a finite time. Moreover, under some conditions on the initial data, we estimate a lower bound of that time.
Citation: Mohammad Kafini, Shadi Al-Omari. Local existence and lower bound of blow-up time to a Cauchy problem of a coupled nonlinear wave equations[J]. AIMS Mathematics, 2021, 6(8): 9059-9074. doi: 10.3934/math.2021526
In this paper, we consider a Cauchy problem of a coupled linearly-damped wave equations with nonlinear sources. In the whole space, we establish the local existence and show that there are solutions with negative initial energy that blow up in a finite time. Moreover, under some conditions on the initial data, we estimate a lower bound of that time.
[1] | J. Ball, Remarks on blow up and nonexistence theorems for nonlinear evolution's equations, Quart. J. Math. Oxford, 28 (1977), 473–486. doi: 10.1093/qmath/28.4.473 |
[2] | H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $Pu_tt = Au+F(u)$, T. Am. Math. Soc., 192 (1974), 1–21. |
[3] | H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equation, SIAM J. Math. Anal., 5 (1974), 138–146. doi: 10.1137/0505015 |
[4] | V. Georgiev, G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms, J. Differ. Equations, 109 (1994), 295–308. doi: 10.1006/jdeq.1994.1051 |
[5] | S. A. Messaoudi, Blow up in a nonlinearly damped wave equation, Mathematische Nachrichten, 231 (2001), 1–7. |
[6] | H. A. Levine, J. Serrin, A global nonexistence theorem for quasilinear evolution equation with dissipation, Arch. Rational Mech. Anal., 137 (1997), 341–361. |
[7] | E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal., 149 (1999), 155–182. doi: 10.1007/s002050050171 |
[8] | S. A. Messaoudi, B. Said-Houari, Blow up of solutions of a class of wave equations with nonlinear damping and source terms, Math. Method. Appl. Sci., 27 (2004), 1687–1696. doi: 10.1002/mma.522 |
[9] | S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Mathematische Nachrichten, 260 (2003), 58–66. doi: 10.1002/mana.200310104 |
[10] | S. A. Messaoudi, Blow up of solutions with positive initial energy in a nonlinear viscoelastic equation, J. Math. Anal. Appl., 320 (2006), 902–915. doi: 10.1016/j.jmaa.2005.07.022 |
[11] | H. A. Levine, S. Ro Park, J. Serrin, Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, J. Math. Anal. Appl., 228 (1998), 181–205. doi: 10.1006/jmaa.1998.6126 |
[12] | G. Todorova, Cauchy problem for a nonlinear wave with nonlinear damping and source terms, C. R. Acad. Sci. Paris Ser. I, 326 (1998), 191–196. doi: 10.1016/S0764-4442(97)89469-4 |
[13] | G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms, J. Math. Anal. Appl., 239 (1999), 213–226. doi: 10.1006/jmaa.1999.6528 |
[14] | S. A. Messaoudi, Blow up in the Cauchy problem for a nonlinearly damped wave equation, Commun. Pure Appl. Anal., 7 (2003), 379–386. |
[15] | Z. Yong, A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in $\mathbb{R}^{n}, $ Appl. Math. Lett., 18 (2005), 281–286. |
[16] | M. Kafini, S. Messaoudi, A blow-up result in a Cauchy viscoelastic problem, Appl. Math. Lett., 21 (2008), 549–553. doi: 10.1016/j.aml.2007.07.004 |
[17] | M. Kafini, S. Messaoudi, A blow-up result for a viscoelastic system in $\mathbb{R}^{n}$, Electron. J. Differ. Eq., 113 (2007), 1–7. |
[18] | S. A. Messaoudi, H. Belkacem, Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl., 365 (2010), 277–287. doi: 10.1016/j.jmaa.2009.10.050 |
[19] | K. Agre, M. Rammaha, Systems of nonlinear wave equations with damping and source terms, Differ. Integral Equ., 19 (2006), 1235–1270. |
[20] | S. A. Messaoudi, N-e. Tatar, Uniform stabilization of solutions of a nonlinear system of viscoelastic equations, Appl. Anal., 87 (2008), 247–263. doi: 10.1080/00036810701668394 |
[21] | M. L. Santos, Decay rates for solutions of a system of wave equations with memory, Electron. J. Differ. Eq., 38 (2002), 1–17. doi: 10.1023/A:1014868322008 |
[22] | C. O. Alves, M. M. Cavalcanti, V. N. D. Cavalcanti, M. A. Rammaha, D. Toundykov, On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms, Discrete Cont. Dyn. S, 2 (2009), 583–608. |
[23] | S. T. Wu, Blow-up of solutions for an integro-differential equation with a nonlinear source, Electron. J. Differ. Eq., 45 (2006), 1–9. |
[24] | H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, 2011. |
[25] | S. H. Belkacem, Exponential growth of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, Z. Angew. Math. Phys., 62 (2011), 115–133. doi: 10.1007/s00033-010-0082-3 |
[26] | W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations, Nonlinear Anal., 71 (2009), 2257–2267. doi: 10.1016/j.na.2009.01.060 |
[27] | M. I. Mustafa, Wellposedness and asymptotic behavior of acoupled system of nonlinear viscoelastic equations, Nonlinear Anal. Real., 13 (2012), 452–463. doi: 10.1016/j.nonrwa.2011.08.002 |
[28] | V. Komornik, Exact controllability and stabilization: the multiplier method, Elsevier Masson, 1994. |
[29] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer-Verlag, 1983. |