The Allee effect is an important mechanism in ecosystems and a realistic description of the interaction between species. The study of the predator-prey model with the Allee effect is of great significance to promote the development of marine ecology. In this work, three aspects of studies are presented: Modelling and analysis: a predator-prey fishery model with the Allee effect in prey and generalist predator is first established. The existence, type, and stability of the boundary equilibria as well as the number of interior equilibria of the proposed model are discussed. Parameter influence: the bifurcations in the predation system are analyzed by selecting the capture rate of prey by the predator and Allee threshold as key parameters, and the results show that the system will undergo saddle-node bifurcation and Bogdanov-Takens bifurcation of codimension at least 2 and 3. Control measures: a bilateral intervention strategy is adopted for the capture and protection of marine fish. The existence and stability of the order-1 periodic solution and the order-2 periodic solution of the control system are analyzed by using the differential equation geometry theory. Additionally, numerical simulations are carried out to verify the correctness of the conclusions, and illustrate the impact of the Allee effect and bilateral intervention on the ecosystem, which provides an effective method for modern fishery conservation and harvesting.
Citation: Yuan Tian, Yang Liu, Kaibiao Sun. Complex dynamics of a predator-prey fishery model: The impact of the Allee effect and bilateral intervention[J]. Electronic Research Archive, 2024, 32(11): 6379-6404. doi: 10.3934/era.2024297
The Allee effect is an important mechanism in ecosystems and a realistic description of the interaction between species. The study of the predator-prey model with the Allee effect is of great significance to promote the development of marine ecology. In this work, three aspects of studies are presented: Modelling and analysis: a predator-prey fishery model with the Allee effect in prey and generalist predator is first established. The existence, type, and stability of the boundary equilibria as well as the number of interior equilibria of the proposed model are discussed. Parameter influence: the bifurcations in the predation system are analyzed by selecting the capture rate of prey by the predator and Allee threshold as key parameters, and the results show that the system will undergo saddle-node bifurcation and Bogdanov-Takens bifurcation of codimension at least 2 and 3. Control measures: a bilateral intervention strategy is adopted for the capture and protection of marine fish. The existence and stability of the order-1 periodic solution and the order-2 periodic solution of the control system are analyzed by using the differential equation geometry theory. Additionally, numerical simulations are carried out to verify the correctness of the conclusions, and illustrate the impact of the Allee effect and bilateral intervention on the ecosystem, which provides an effective method for modern fishery conservation and harvesting.
[1] | A. J. Lotka, Eelements of physical Biology, Am. J. Public Health, 21 (1926), 341–343. https://doi.org/10.2307/2298330 doi: 10.2307/2298330 |
[2] | V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/119012b0 doi: 10.1038/119012b0 |
[3] | L. Nie, Z. Teng, H. Lin, J. Peng, The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator, Biosystems, 98 (2009), 67–72. https://doi.org/10.1016/j.biosystems.2009.06.001 doi: 10.1016/j.biosystems.2009.06.001 |
[4] | M. X. Chen, R. C. Wu, Dynamics of a harvested predator-prey model with predator-taxis, Bull. Malay. Math. Sci. Soc., 46 (2023), 76. https://doi.org/10.1007/s40840-023-01470-w doi: 10.1007/s40840-023-01470-w |
[5] | X. R. Yan, Y. Tian, K. B. Sun, Effects of additional food availability and pulse control on the dynamics of a Holling-(p+1) type pest-natural enemy model, Electron. Res. Arch., 31 (2023), 6454–6480. https://doi.org/10.3934/era.2023327 doi: 10.3934/era.2023327 |
[6] | M. X. Chen, Y. Liu, C. R. Tian, Bifurcations of a single species model with spatial memory environment, Appl. Math. Lett. 154 (2024), 109110. https://doi.org/10.1016/j.aml.2024.109110 doi: 10.1016/j.aml.2024.109110 |
[7] | X. R. Yan, Y. Tian, K. B. Sun, Dynamic analysis of a delayed pest-natural enemy model: Triple effects of non-monotonic functional response, additional food supply and habitat complexity, Int. J. Biomath., (2024), 2450062. https://doi.org/10.1142/S1793524524500621 doi: 10.1142/S1793524524500621 |
[8] | A. Erbach, F. Lutscher, G. Seo, Bistability and limit cycles in generalist predator-prey dynamics, Ecol. Complex., 14 (2013), 48–55. https://doi.org/10.1016/j.ecocom.2013.02.005 doi: 10.1016/j.ecocom.2013.02.005 |
[9] | C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, Can. Entomol., 91 (1959), 293–320. https://doi.org/10.4039/Ent91293-5 doi: 10.4039/Ent91293-5 |
[10] | C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385–398. https://doi.org/10.4039/Ent91385-7 doi: 10.4039/Ent91385-7 |
[11] | R. Arditi, L. R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence, J. Theor. Biol., 139 (1989), 311–326. https://doi.org/10.1016/S0022-5193(89)80211-5 doi: 10.1016/S0022-5193(89)80211-5 |
[12] | J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. https://doi.org/10.2307/3866 doi: 10.2307/3866 |
[13] | R. S. Cantrell, C. Cosner, On the dynamics of predator-prey models with the Beddington-Deangelis functional response, J. Math. Anal. Appl., 257 (2001), 206–222. https://doi.org/10.1006/jmaa.2000.7343 doi: 10.1006/jmaa.2000.7343 |
[14] | Y. Kuang, E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36 (1998), 389–406. https://doi.org/10.1007/s002850050105 doi: 10.1007/s002850050105 |
[15] | D. Xiao, S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268–290. https://doi.org/10.1007/s002850100097 doi: 10.1007/s002850100097 |
[16] | W. C. Allee, Animal Aggregations: A Study in General Sociology, The University of Chicago Press, 1931. https://doi.org/10.2307/2961735 |
[17] | J. Gascoigne, R. Lipcius, Allee effects in marine systems, Mar. Ecol. Prog. Ser., 269 (2004), 49–59. https://doi.org/10.3354/meps269049 doi: 10.3354/meps269049 |
[18] | P. Aguirre, A general class of predation models with multiplicative Allee effect, Nonlinear Dyn., 78 (2014), 629–648. https://doi.org/10.1007/s11071-014-1465-3 doi: 10.1007/s11071-014-1465-3 |
[19] | C. Arancibia-Ibarra, J. Flores, G. Pettet, P. Heijster, A holling-tanner predator-prey model with strong allee effect, Int. J Bifurcat. Chaos, 29 (2019), 1930032. https://doi.org/10.1142/S0218127419300325 doi: 10.1142/S0218127419300325 |
[20] | Y. N. Zeng, P. Yu, Multistable states in a predator-prey model with generalized Holling type Ⅲ functional response and a strong Allee effect, Commun. Nonlinear Sci., 131 (2024), 107846. https://doi.org/10.1016/j.cnsns.2024.107846 doi: 10.1016/j.cnsns.2024.107846 |
[21] | P. J. Pal, T. S. Saha, Qualitative analysis of a predator-prey system with double Allee effect in prey, Chaos Soliton Fract., 73 (2015), 36–63. https://doi.org/10.1016/j.chaos.2014.12.007 doi: 10.1016/j.chaos.2014.12.007 |
[22] | A. Arsie, C. Kottegoda, C. H. Shan, A predator-prey system with generalized Holling type Ⅳ functional response and Allee effects in prey, J Differ. Equations, 309 (2022), 704–740. https://doi.org/10.1016/j.jde.2021.11.041 doi: 10.1016/j.jde.2021.11.041 |
[23] | E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma, J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Appl. Math. Model., 35 (2011), 366–381. https://doi.org/10.1016/j.apm.2010.07.001 doi: 10.1016/j.apm.2010.07.001 |
[24] | M. Sen, M. Banerjee, A. Morozov, Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect, Ecol. Complexity, 11 (2012) 12–27. https://doi.org/10.1016/j.ecocom.2012.01.002 doi: 10.1016/j.ecocom.2012.01.002 |
[25] | D. Sen, S. Ghorai, S. Sharma, M. Banerjee, Allee effect in prey's growth reduces the dynamical complexity in prey-predator model with generalist predator, Appl. Math. Modell., 91 (2020), 768–790. https://doi.org/10.1016/j.apm.2020.09.046 doi: 10.1016/j.apm.2020.09.046 |
[26] | J. J. Nieto, D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal.-Real., 10 (2009), 680–690. https://doi.org/10.1016/j.nonrwa.2007.10.022 doi: 10.1016/j.nonrwa.2007.10.022 |
[27] | B. Liu, Y. Zhang, L. Chen, The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management, Nonlinear Anal.-Real., 6 (2005), 227–243. https://doi.org/10.1016/j.nonrwa.2004.08.001 doi: 10.1016/j.nonrwa.2004.08.001 |
[28] | X. Y. Song, Y. F. Li, Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type Ⅱ schemes and impulsive effect, Nonlinear Anal.-Real., 9 (2008), 64–79. https://doi.org/10.1016/j.nonrwa.2006.09.004 doi: 10.1016/j.nonrwa.2006.09.004 |
[29] | S. Tang, W. Pang, R. A. Cheke, J. H. Wu, Global dynamics of a state-dependent feedback control system, Adv. Differ. Equations, 2015 (2015), 1–70. https://doi.org/10.1186/s13662-015-0661-x doi: 10.1186/s13662-015-0661-x |
[30] | Q. Zhang, B. Tang, T. Cheng, S. Tang, Bifurcation analysis of a generalized impulsive Kolmogorov model with applications to pest and disease control, SIAM J. Appl. Math., 80 (2020), 1796–1819. https://doi.org/10.1137/19M1279320 doi: 10.1137/19M1279320 |
[31] | Y. Tian, X. R. Yan, K. B. Sun, Dual effects of additional food supply and threshold control on the dynamics of a Leslie-Gower model with pest herd behavior, Chaos Soliton Fract., 185 (2024), 115163. https://doi.org/10.1016/j.chaos.2024.115163 doi: 10.1016/j.chaos.2024.115163 |
[32] | H. Li, Y. Tian, Dynamic behavior analysis of a feedback control predator-prey model with exponential fear effect and Hassell-Varley functional response, J Franklin. I., 360 (2023), 3479–3498. https://doi.org/10.1016/j.jfranklin.2022.11.030 doi: 10.1016/j.jfranklin.2022.11.030 |
[33] | Y. Tian, Y. Gao, K. B. Sun, Global dynamics analysis of instantaneous harvest fishery model guided by weighted escapement strategy, Chaos Soliton Fract., 164 (2022), 112597. https://doi.org/10.1016/j.chaos.2022.112597 doi: 10.1016/j.chaos.2022.112597 |
[34] | Y. Tian, Y. Gao, K. B. Sun, Qualitative analysis of exponential power rate fishery model and complex dynamics guided by a discontinuous weighted fishing strategy, Commun. Nonlinear Sci., 118 (2023), 107011. https://doi.org/10.1016/j.cnsns.2022.107011 doi: 10.1016/j.cnsns.2022.107011 |
[35] | Y. Tian, C. X. Li, J. Liu, Non-smooth competitive systems and complex dynamics induced by linearly dependent feedback control, Nonlinear Anal, -Hybri., 51 (2024), 101442. https://doi.org/10.1016/j.nahs.2023.101442 doi: 10.1016/j.nahs.2023.101442 |
[36] | Y. Tian, H. Li, K. Sun, Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting, Math. Comput. Simulat., 218 (2024), 31–48. https://doi.org/10.1016/j.matcom.2023.11.024 doi: 10.1016/j.matcom.2023.11.024 |
[37] | Y. Tian, H. Guo, K. B. Sun, Complex dynamics of two prey–predator harvesting models with prey refuge and interval-valued imprecise parameters, Math. Meth. Appl. Sci., 46 (2023), 14278–14298. https://doi.org/10.1002/mma.9319 doi: 10.1002/mma.9319 |
[38] | H. Guo, Y. Tian, K. B. Sun, X. Y. Song, Study on dynamic behavior of two fishery harvesting models: effects of variable prey refuge and imprecise biological parameters, J. Appl. Math. Comput., 69 (2023), 4243–4268. https://doi.org/10.1007/s12190-023-01925-0 doi: 10.1007/s12190-023-01925-0 |
[39] | Y. Tian, C. X. Li, J. Liu, Complex dynamics and optimal harvesting strategy of competitive harvesting models with interval-valued imprecise parameters. Chaos Soliton Fract., 167 (2023), 113084. https://doi.org/10.1016/j.chaos.2022.113084 doi: 10.1016/j.chaos.2022.113084 |
[40] | J. Xu, M. Z. Huang, X. Y. Song, Dynamical analysis of a two-species competitive system with state feedback impulsive control, Int. J Biomath., 13 (2020), 2050007. https://doi.org/10.1142/S1793524520500072 doi: 10.1142/S1793524520500072 |
[41] | M. Zhang, Y. Zhao, X. Y. Song, Dynamics of bilateral control system with state feedback for price adjustment strategy, Int. J Biomath., 14 (2021), 2150031. https://doi.org/10.1142/S1793524521500315 doi: 10.1142/S1793524521500315 |
[42] | J. Xu, M. Z. Huang, X. Y. Song, Dynamics of a guanaco–sheep competitive system with unilateral and bilateral control, Nonlinear Dyn., 107 (2022), 3111–3126. https://doi.org/10.1007/s11071-021-07128-1 doi: 10.1007/s11071-021-07128-1 |
[43] | L. Perko, Differential Equations and Dynamical System, New York: Springer, 1996. |
[44] | J. Sotomayor, Generic Bifurcations of Dynamical Systems, New York: Academic Press, 1973. https://doi.org/10.1016/B978-0-12-550350-1.50047-3 |