This paper explored a delayed diffusive prey-predator model with prey-taxis involving the volume-filling mechanism subject to homogeneous Neumann boundary condition. To figure out the impact on the dynamic of the prey-predator model due to prey-taxis and time delay, we treated the prey-tactic coefficient $ \chi $ and time delay $ \tau $ as the bifurcating parameters and did stability and bifurcation analysis. It showed that the time delay will induce Hopf bifurcations in the absence of prey-taxis, and the bifurcation periodic solution at the first critical value of $ \tau $ was spatially homogeneous. Hopf bifurcations occurred in the model when the prey-taxis and time delay coexisted, and at the first critical value of $ \tau $, spatially homogeneous or nonhomogeneous periodic solutions might emerge. It was also discovered that the bifurcation curves will intersect, which implied that Hopf-Hopf bifurcations can occur. Finally, we did numerical simulations to validate our outcomes.
Citation: Fengrong Zhang, Ruining Chen. Spatiotemporal patterns of a delayed diffusive prey-predator model with prey-taxis[J]. Electronic Research Archive, 2024, 32(7): 4723-4740. doi: 10.3934/era.2024215
This paper explored a delayed diffusive prey-predator model with prey-taxis involving the volume-filling mechanism subject to homogeneous Neumann boundary condition. To figure out the impact on the dynamic of the prey-predator model due to prey-taxis and time delay, we treated the prey-tactic coefficient $ \chi $ and time delay $ \tau $ as the bifurcating parameters and did stability and bifurcation analysis. It showed that the time delay will induce Hopf bifurcations in the absence of prey-taxis, and the bifurcation periodic solution at the first critical value of $ \tau $ was spatially homogeneous. Hopf bifurcations occurred in the model when the prey-taxis and time delay coexisted, and at the first critical value of $ \tau $, spatially homogeneous or nonhomogeneous periodic solutions might emerge. It was also discovered that the bifurcation curves will intersect, which implied that Hopf-Hopf bifurcations can occur. Finally, we did numerical simulations to validate our outcomes.
[1] | A. J. Lotka, Elements of Physical Biology, Williams & Wilkins, Baltimore, 1925. |
[2] | V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12–13. https://doi.org/10.1038/119012a0 doi: 10.1038/119012a0 |
[3] | H. Malchow, Spatio-temporal pattern formation in nonlinear non-equilibrium plankton dynamics, Proc. R. Soc. B, 251 (1993), 103–109. https://doi.org/10.1098/rspb.1993.0015 doi: 10.1098/rspb.1993.0015 |
[4] | L. A. Segel, J. L. Jackson, Dissipative structure: an explanation and an ecological example, J. Theor. Biol., 37 (1972), 545–559. https://doi.org/10.1016/0022-5193(72)90090-2 doi: 10.1016/0022-5193(72)90090-2 |
[5] | M. Banerjee, S. Petrovskii, Self-organised spatial patterns and chaos in a ratio-dependent predator–prey system, Theor. Ecol., 4 (2011), 37–53. https://doi.org/10.1007/s12080-010-0073-1 doi: 10.1007/s12080-010-0073-1 |
[6] | M. Baurmann, T. Gross, U. Frudel, Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations, J. Theor. Biol., 245 (2007), 220–229. https://doi.org/10.1016/j.jtbi.2006.09.036 doi: 10.1016/j.jtbi.2006.09.036 |
[7] | S. V. Petrovskii, H. Malchow, A minimal model of pattern formation in a prey-predator system, Math. Comput. Modell., 29 (1999), 49–63. https://doi.org/10.1016/S0895-7177(99)00070-9 doi: 10.1016/S0895-7177(99)00070-9 |
[8] | E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5 |
[9] | E. F. Keller, L. A. Sege, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6 |
[10] | T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3 |
[11] | N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X |
[12] | K. J. Painter, Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theor. Biol., 481 (2019), 162–182. https://doi.org/10.1016/j.jtbi.2018.06.019 doi: 10.1016/j.jtbi.2018.06.019 |
[13] | T. Hillen, K. J. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280–301. https://doi.org/10.1006/aama.2001.0721 doi: 10.1006/aama.2001.0721 |
[14] | K. J. Painter, T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501–543. Available from: http://www.math.ualberta.ca/thillen/paper/CAMQ-final.pdf. |
[15] | H. Hao, Y. Li, F. Zhang, Z. Lv, Bifurcation analysis of a predator-prey model with volume-filling mechanism, Int. J. Wireless Mobile Comput., 25 (2023), 272–281. https://doi.org/10.1504/IJWMC.2023.134674 doi: 10.1504/IJWMC.2023.134674 |
[16] | Y. Li, S. Li, J. Zhao, Global stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality and prey harvesting, Nonlinear Anal.-Model. Control, 22 (2017), 646–661. https://doi.org/10.15388/NA.2017.5.5 doi: 10.15388/NA.2017.5.5 |
[17] | M. Sambath, K. Balachandran, M. Suvinthra, Stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality, Complexity, 21 (2016), 34–43. https://doi.org/10.1002/cplx.21708 doi: 10.1002/cplx.21708 |
[18] | Z. Zhang, R. K. Upadhyay, R. Agrawal, J. Datta, The gestation delay: a factor causing complex dynamics in Gause-type competition models, Complexity, 2018 (2018), 1–21. https://doi.org/10.1155/2018/1589310 doi: 10.1155/2018/1589310 |
[19] | S. A. Gourley, Y. Kuang, A stage structured predator-prey model and its dependence on maturation delay and death rate, J. Math. Biol., 49 (2004), 188–200. https://doi.org/10.1007/s00285-004-0278-2 doi: 10.1007/s00285-004-0278-2 |
[20] | B. Barman, B. Ghosh, Dynamics of a spatially coupled model with delayed prey dispersal, Int. J. Modell. Simul., 42 (2022), 400–414. https://doi.org/10.1080/02286203.2021.1926048 doi: 10.1080/02286203.2021.1926048 |
[21] | É. Diz-Pita, M. V. Otero-Espinar, Predator–prey models: a review of some recent advances, Mathematics, 9 (2021), 1783. https://doi.org/10.3390/math9151783 doi: 10.3390/math9151783 |
[22] | Y. Li, Dynamics of a delayed diffusive predator-prey model with hyperbolic mortality, Nonlinear Dyn., 85 (2016), 2425–2436. https://doi.org/10.1007/s11071-016-2835-9 doi: 10.1007/s11071-016-2835-9 |
[23] | Q. Shi, Y. Song, Spatially nonhomogeneous periodic patterns in a delayed predator–prey model with predator-taxis diffusion, Appl. Math. Lett., 131 (2022), 108062. https://doi.org/10.1016/j.aml.2022.108062 doi: 10.1016/j.aml.2022.108062 |
[24] | S. Chen, J. Shi, J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie–Gower predator–prey system, Int. J. Bifurcation Chaos, 22 (2012), 1250061. https://doi.org/10.1142/S0218127412500617 doi: 10.1142/S0218127412500617 |