Research article Special Issues

Spatiotemporal patterns of a delayed diffusive prey-predator model with prey-taxis

  • Received: 21 May 2024 Revised: 11 July 2024 Accepted: 23 July 2024 Published: 29 July 2024
  • This paper explored a delayed diffusive prey-predator model with prey-taxis involving the volume-filling mechanism subject to homogeneous Neumann boundary condition. To figure out the impact on the dynamic of the prey-predator model due to prey-taxis and time delay, we treated the prey-tactic coefficient $ \chi $ and time delay $ \tau $ as the bifurcating parameters and did stability and bifurcation analysis. It showed that the time delay will induce Hopf bifurcations in the absence of prey-taxis, and the bifurcation periodic solution at the first critical value of $ \tau $ was spatially homogeneous. Hopf bifurcations occurred in the model when the prey-taxis and time delay coexisted, and at the first critical value of $ \tau $, spatially homogeneous or nonhomogeneous periodic solutions might emerge. It was also discovered that the bifurcation curves will intersect, which implied that Hopf-Hopf bifurcations can occur. Finally, we did numerical simulations to validate our outcomes.

    Citation: Fengrong Zhang, Ruining Chen. Spatiotemporal patterns of a delayed diffusive prey-predator model with prey-taxis[J]. Electronic Research Archive, 2024, 32(7): 4723-4740. doi: 10.3934/era.2024215

    Related Papers:

  • This paper explored a delayed diffusive prey-predator model with prey-taxis involving the volume-filling mechanism subject to homogeneous Neumann boundary condition. To figure out the impact on the dynamic of the prey-predator model due to prey-taxis and time delay, we treated the prey-tactic coefficient $ \chi $ and time delay $ \tau $ as the bifurcating parameters and did stability and bifurcation analysis. It showed that the time delay will induce Hopf bifurcations in the absence of prey-taxis, and the bifurcation periodic solution at the first critical value of $ \tau $ was spatially homogeneous. Hopf bifurcations occurred in the model when the prey-taxis and time delay coexisted, and at the first critical value of $ \tau $, spatially homogeneous or nonhomogeneous periodic solutions might emerge. It was also discovered that the bifurcation curves will intersect, which implied that Hopf-Hopf bifurcations can occur. Finally, we did numerical simulations to validate our outcomes.



    加载中


    [1] A. J. Lotka, Elements of Physical Biology, Williams & Wilkins, Baltimore, 1925.
    [2] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12–13. https://doi.org/10.1038/119012a0 doi: 10.1038/119012a0
    [3] H. Malchow, Spatio-temporal pattern formation in nonlinear non-equilibrium plankton dynamics, Proc. R. Soc. B, 251 (1993), 103–109. https://doi.org/10.1098/rspb.1993.0015 doi: 10.1098/rspb.1993.0015
    [4] L. A. Segel, J. L. Jackson, Dissipative structure: an explanation and an ecological example, J. Theor. Biol., 37 (1972), 545–559. https://doi.org/10.1016/0022-5193(72)90090-2 doi: 10.1016/0022-5193(72)90090-2
    [5] M. Banerjee, S. Petrovskii, Self-organised spatial patterns and chaos in a ratio-dependent predator–prey system, Theor. Ecol., 4 (2011), 37–53. https://doi.org/10.1007/s12080-010-0073-1 doi: 10.1007/s12080-010-0073-1
    [6] M. Baurmann, T. Gross, U. Frudel, Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations, J. Theor. Biol., 245 (2007), 220–229. https://doi.org/10.1016/j.jtbi.2006.09.036 doi: 10.1016/j.jtbi.2006.09.036
    [7] S. V. Petrovskii, H. Malchow, A minimal model of pattern formation in a prey-predator system, Math. Comput. Modell., 29 (1999), 49–63. https://doi.org/10.1016/S0895-7177(99)00070-9 doi: 10.1016/S0895-7177(99)00070-9
    [8] E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [9] E. F. Keller, L. A. Sege, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6
    [10] T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3
    [11] N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X
    [12] K. J. Painter, Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theor. Biol., 481 (2019), 162–182. https://doi.org/10.1016/j.jtbi.2018.06.019 doi: 10.1016/j.jtbi.2018.06.019
    [13] T. Hillen, K. J. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280–301. https://doi.org/10.1006/aama.2001.0721 doi: 10.1006/aama.2001.0721
    [14] K. J. Painter, T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501–543. Available from: http://www.math.ualberta.ca/thillen/paper/CAMQ-final.pdf.
    [15] H. Hao, Y. Li, F. Zhang, Z. Lv, Bifurcation analysis of a predator-prey model with volume-filling mechanism, Int. J. Wireless Mobile Comput., 25 (2023), 272–281. https://doi.org/10.1504/IJWMC.2023.134674 doi: 10.1504/IJWMC.2023.134674
    [16] Y. Li, S. Li, J. Zhao, Global stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality and prey harvesting, Nonlinear Anal.-Model. Control, 22 (2017), 646–661. https://doi.org/10.15388/NA.2017.5.5 doi: 10.15388/NA.2017.5.5
    [17] M. Sambath, K. Balachandran, M. Suvinthra, Stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality, Complexity, 21 (2016), 34–43. https://doi.org/10.1002/cplx.21708 doi: 10.1002/cplx.21708
    [18] Z. Zhang, R. K. Upadhyay, R. Agrawal, J. Datta, The gestation delay: a factor causing complex dynamics in Gause-type competition models, Complexity, 2018 (2018), 1–21. https://doi.org/10.1155/2018/1589310 doi: 10.1155/2018/1589310
    [19] S. A. Gourley, Y. Kuang, A stage structured predator-prey model and its dependence on maturation delay and death rate, J. Math. Biol., 49 (2004), 188–200. https://doi.org/10.1007/s00285-004-0278-2 doi: 10.1007/s00285-004-0278-2
    [20] B. Barman, B. Ghosh, Dynamics of a spatially coupled model with delayed prey dispersal, Int. J. Modell. Simul., 42 (2022), 400–414. https://doi.org/10.1080/02286203.2021.1926048 doi: 10.1080/02286203.2021.1926048
    [21] É. Diz-Pita, M. V. Otero-Espinar, Predator–prey models: a review of some recent advances, Mathematics, 9 (2021), 1783. https://doi.org/10.3390/math9151783 doi: 10.3390/math9151783
    [22] Y. Li, Dynamics of a delayed diffusive predator-prey model with hyperbolic mortality, Nonlinear Dyn., 85 (2016), 2425–2436. https://doi.org/10.1007/s11071-016-2835-9 doi: 10.1007/s11071-016-2835-9
    [23] Q. Shi, Y. Song, Spatially nonhomogeneous periodic patterns in a delayed predator–prey model with predator-taxis diffusion, Appl. Math. Lett., 131 (2022), 108062. https://doi.org/10.1016/j.aml.2022.108062 doi: 10.1016/j.aml.2022.108062
    [24] S. Chen, J. Shi, J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie–Gower predator–prey system, Int. J. Bifurcation Chaos, 22 (2012), 1250061. https://doi.org/10.1142/S0218127412500617 doi: 10.1142/S0218127412500617
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(398) PDF downloads(45) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog