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Abstract: This paper explored a delayed diffusive prey-predator model with prey-taxis involving the
volume-filling mechanism subject to homogeneous Neumann boundary condition. To figure out the
impact on the dynamic of the prey-predator model due to prey-taxis and time delay, we treated the
prey-tactic coefficient χ and time delay τ as the bifurcating parameters and did stability and bifurcation
analysis. It showed that the time delay will induce Hopf bifurcations in the absence of prey-taxis,
and the bifurcation periodic solution at the first critical value of τ was spatially homogeneous. Hopf
bifurcations occurred in the model when the prey-taxis and time delay coexisted, and at the first critical
value of τ, spatially homogeneous or nonhomogeneous periodic solutions might emerge. It was also
discovered that the bifurcation curves will intersect, which implied that Hopf-Hopf bifurcations can
occur. Finally, we did numerical simulations to validate our outcomes.
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1. Introduction

The prey-predator model is a kind of essential differential equation to investigate the intricate re-
lationship between prey and predator. It was suggested by Lotka [1] and Volterra [2], and since then,
many mathematicians have studied this problem and many improved models have been formulated.
Nowadays, the problem has been a core topic in math and biology, and studying it can help us better
understand the nature and dynamics of differential equations.

The prey-predator models represented by ordinary differential equations have been discussed ex-
tensively for years, and as time went on and with the development of mathematics, partial differential
equations were introduced to describe the spatial effect [3–7]. Besides random diffusion, directed
movement should be considered because predators will move toward places where the prey is plenti-
ful. This phenomenon is called chemotaxis. The first chemotaxis model was proposed by Keller and
Segel [8, 9], and it attracted many mathematicians’ attention [10–12]. The chemotaxis is introduced
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in the prey-predator model and there are two types, prey-taxis and predator-taxis. In order to further
simulate the real situation and prevent overcrowding, Hillen and Painter et al. described the mechanism
of volume effects in [13, 14]. Based on the reasonable choice of q(v) = 1 − v

γ
, 0 ≤ v < γ [10], Hao et

al. [15] investigated the model with volume-filling mechanism,
ut = d1∆u + u(1 − u) − hu − suv

β+u , x ∈ Ω, t > 0,
vt = d2∆v − ∇ · (mv∇u) + α( uv

β+u −
rv2

1+rv ), x ∈ Ω, t > 0,
∂u
∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where Ω is a bound domain in Rn (n ≥ 1) with smooth boundary ∂Ω, ν is the unit outward normal
vector of ∂Ω, and ∆ is the Laplace operator on Ω. u and v represent the densities of prey and predator
at location x and time t, respectively, and u0 and v0 are assumed to be nonnegative and bound in
Ω. d1, d2 > 0 are the random diffusion coefficients of prey and predator, respectively, and they are
independent of time and space, and h is the harvesting coefficient; the effect of harvesting has been
discussed in [16]. s, β, α, r are all positive and their exact meanings can be referred to [17]. The
chemotaxis term ∇· (mv∇u) denotes the possibility that the predator will travel in the gradient direction
of prey, where m stands for the sensitivity, which is defined by

m = m(v) =
{
χ(1 − v

vp
), 0 ≤ v < vp,

0, v ≥ vp.
(1.2)

χ is the chemotaxis coefficient, vp is the maximum value of the accommodate capacity in a unit
volume. From the definition of m, it can be interpreted that if the number of predators exceeds vp, no
predator will move to the unit volume. When v ≥ vp, the chemotactic response will be switched off so
that the authors in [15] just considered the case 0 ≤ v < vp.

It is well-known that time delay reflects the delay in response time between prey and predator,
in the process of predation. There are many phenomena of time delay, for example, predators need
time to convert the energy they got from prey to reproduce [18]; newborns becoming adults also need
time [19]; and species spend time moving between two areas [20,21]. In contrast to the model without
time delay, the delayed equations are more realistic and may induce more complex dynamics [22]. Shi
and Song studied a model that combines both prey-taxis and time delay [23], which shows that the
combined influence of prey-taxis and time delay will induce interesting and different dynamics.

Motivated by the above research, assuming that the predation in the earlier times will decrease the
rate of the prey population in later times [24], we incorporate a time delay into the system (1.1) and
take Ω = (0, lπ), then system (1.1) becomes the following system:

ut = d1uxx + u(1 − u) − hu − suvτ
β+u , x ∈ (0, lπ), t > 0,

vt = d2vxx − (mvux)x + α( uv
β+u −

rv2

1+rv ), x ∈ (0, lπ), t > 0,
ux(0, t) = ux(lπ, t) = 0, vx(0, t) = vx(lπ, t) = 0, t > 0,
u(x, t) = u0(x, t) ≥ 0, v(x, t) = v0(x, t) ≥ 0, x ∈ [0, lπ], t ∈ [−τ, 0],

(1.3)

where vτ = v(x, t − τ), and τ denotes the time delay.
In the absence of time delay and volume-filling mechanism, the system (1.3) has been studied

in [16]. Hao et al. studied the model with only prey-taxis with the volume-filling mechanism in [15],

Electronic Research Archive Volume 32, Issue 7, 4723–4740.



4725

and they proved that the prey-taxis with the volume-filling mechanism will induce steady state bifur-
cation, but it has no impact on the appearance of Hopf bifurcation. In the present paper, we mainly
concentrate on the combined effect of time delay and prey-taxis involving volume-filling mechanism
on the dynamics of the system (1.3), so we just consider the case 0 ≤ v < vp, which indicates m(v) > 0.

The framework of this paper is as follows. Section 2 mainly discusses the cases χ = 0, τ > 0 and
χ > 0, τ > 0. By solving the characteristic equation and treating χ and τ as bifurcating parameters,
we obtain the stability and bifurcation results. The results of numerical simulations are displayed in
Section 3. Section 4 shows the conclusion of this paper. Throughout the paper, N denotes the set of
positive integers and N0 = N ∪ 0.

2. Stability and Hopf bifurcations

To begin, we explore the stability of the system (1.3) with χ = 0, τ > 0 and χ > 0, τ > 0, respec-
tively. By direct calculation, the system (1.3) has three equilibria: (0,0), (1 − h, 0) (0 < h < 1), and the
unique positive constant equilibrium (u∗, v∗), where

u∗ =
(1−β−h− s

βr )+
√

(1−β−h− s
βr )2+4β(1−h)

2 , v∗ =
u∗
βr
. (2.1)

It is apparent to infer that the equilibria (0, 0) and (1 − h, 0) are unstable. Then, we consider the
stability of (u∗, v∗).

Linearizing the system (1.3) at (u∗, v∗), we have(
ut

vt

)
=

(
d1∆ 0
−m∗v∗∆ d2∆

) (
u
v

)
+

1 − 2u∗ − h − sv∗β
(β+u∗)2 0

αβv∗
(β+u∗)2 −

αrv∗
(1+rv∗)2

 (uv
)
+

(
0 −

su∗
β+u∗

0 0

) (
uτ
vτ

)
. (2.2)

Since u∗ satisfies u∗(1 − u∗) − hu∗ − su∗v∗
β+u∗
= 0, u∗ , 0, we can obtain

1 − 2u∗ − h −
sv∗β

(β + u∗)2 = u∗(
sv∗

(β + u∗)2 − 1),

and
αrv∗

(1 + rv∗)2 =
αβu∗

(β + u∗)2 ,

because of v∗ = u∗
βr .

For convenience, let

θ = u∗(1 −
sv∗

(β + u∗)2 ), η =
αβu∗

(β + u∗)2 ,

δ =
su∗

β + u∗
> 0, ρ = (1 −

v∗
vp

)v∗ > 0,
(2.3)

then linearized system (2.2) can be rewritten as(
ut

vt

)
=

(
d1∆ 0
−χρ∆ d2∆

) (
u
v

)
+

(
−θ 0
η

βr −η

) (
u
v

)
+

(
0 −δ

0 0

) (
uτ
vτ

)
. (2.4)
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When χ = 0, τ = 0, we know from [22] that the positive constant equilibrium (u∗, v∗) is locally
asymptotically stable if

θ ≥ 0, 0 < h < 1. (2.5)

Our analysis in the following paper is based on condition (2.5). When χ > 0, τ = 0, the conclusions
in [15] reveal that χ can’t induce Turing and Hopf bifurcations for θ ≥ 0. Next, we consider the other
two cases.

When χ = 0, τ > 0, the linearized system (2.4) turns to(
ut

vt

)
=

(
d1∆ 0

0 d2∆

) (
u
v

)
+

(
−θ 0
η

βr −η

) (
u
v

)
+

(
0 −δ

0 0

) (
uτ
vτ

)
.

Then, the corresponding characteristic equation is

λ2 + (d1µk + d2µk + θ + η)λ + (d1µk + θ)(d2µk + η) +
ηδ

βr
e−λτ = 0, (2.6)

where µk is the eigenvalues of −∆ inΩ = (0, lπ) under the homogeneous Neumann boundary condition,
and 0 = µ0 < µ1 < µ2 < · · · < µk =

k2

l2 < · · · . Coincidentally, Eq (2.6) is the same as the characteristic
equation in [22], where the reader can refer to it for more details and concrete content.

When χ > 0, τ > 0, the characteristic equation of linearized system (2.4) can be written as

λ2 + (d1µk + θ + d2µk + η)λ + (d1µk + θ)(d2µk + η) + δ(χρµk +
η

βr
)e−λτ = 0. (2.7)

Specifically, when θ ≥ 0, all the conditions of Theorem 2.2 in [15] are satisfied, which implies that
all the roots of Eq (2.7) with τ = 0 have negative real parts. For τ > 0, substituting λ = 0 into Eq (2.7),
we can see that

(d1µk + θ)(d2µk + η) + δ(χρµk +
η

βr
) = 0, (2.8)

and it is obvious that no µk > 0 satisfies Eq (2.8) due to the positivity of all the coefficients of Eq (2.8),
which indicates that the steady state bifurcation will not emerge in the system (1.3).

Next, we mainly study the Hopf bifurcation. As we all know, the necessary condition for Hopf
bifurcation to occur is Eq (2.7) has purely imaginary roots ±iωk (ωk > 0). Substituting λ = iωk into
Eq (2.7), we can obtain

− ω2
k + (d1µk + d2µk + θ + η)iωk + (d1µk + θ)(d2µk + η) + δ(χρµk +

η

βr
)e−iωkτ = 0. (2.9)

Separating the real and imaginary parts of Eq (2.9), we conclude that
cos(ωkτ) =

ω2
k − (d1µk + θ)(d2µk + η)

δ(χρµk +
η

βr )
,

sin(ωkτ) =
(d1µk + θ + d2µk + η)ωk

δ(χρµk +
η

βr )
,

(2.10)

thus we have

ω4
k + ((d1µk + θ)2 + (d2µk + η)2)ω2

k + (d1µk + θ)2(d2µk + η)2 − δ2(χρµk +
η

βr
)2 = 0. (2.11)
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It is clear that (d1µk + θ)2 + (d2µk + η)2 > 0 holds, and we can infer that Eq (2.11) has positive roots
only if

(d1µk + θ)2(d2µk + η)2 − δ2(χρµk +
η

βr
)2 < 0,

which implies
(d1µk + θ)(d2µk + η) − δ(χρµk +

η

βr
) < 0. (2.12)

Subsequently, we determine the range for µk satisfying Eq (2.12).

Lemma 2.1. Let θ, η, δ, ρ be defined in Eq (2.3), and θ, h satisfy Eq (2.5). Define:

χ2 =
1
δρ

(d1η + d2θ + 2

√
d1d2η(θ −

δ

βr
)), (2.13)

y−(χ) =
1

2d1d2
(−(d1η + d2θ − χρδ) −

√
(d1η + d2θ − χρδ)2 − 4d1d2η(θ −

δ

βr
)), (2.14)

y+(χ) =
1

2d1d2
(−(d1η + d2θ − χρδ) +

√
(d1η + d2θ − χρδ)2 − 4d1d2η(θ −

δ

βr
)). (2.15)

(I) if θ < δ
βr , Eq (2.12) holds when 0 ≤ µk < y+(χ);

(II) if θ ≥ δ
βr and χ > χ2, Eq (2.12) holds when y−(χ) < µk < y+(χ).

Proof. To start, the distribution of the roots of the corresponding quadratic equation of Eq (2.12) will
be obtained by letting y = µk:

d1d2y2 + (d1η + d2θ − δχρ)y + θη −
δη

βr
= 0. (2.16)

If θ < δ
βr , it’s evident that y+(χ) defined in Eq (2.15) is the only positive root of Eq (2.16), and we

obtain that Eq (2.12) holds when 0 ≤ µk < y+(χ).
If θ ≥ δ

βr , we study the discriminant ∆1 of Eq (2.16):

∆1 = (d1η + d2θ − ρδχ)2 − 4d1d2(θη −
δη

βr
),

when ∆1 > 0, Eq (2.16) has two roots. By directly calculating, we have ∆1 > 0 when χ < χ1 =
1
δρ

(d1η + d2θ − 2
√

d1d2η(θ − δ
βr ) or χ > χ2 =

1
δρ

(d1η + d2θ + 2
√

d1d2η(θ − δ
βr ). Specifically, Eq (2.16)

has no positive roots for χ < χ1; however, if χ > χ2, Eq (2.16) has two positive roots y−(χ) ≥ 0 and
y+(χ) > 0, which are defined by ((2.14) and (2.15)). Thus, Eq (2.12) holds when y−(χ) < y < y+(χ).

Based on Lemma 2.1, we will derive the conditions that Eq (2.7) have purely imaginary roots.

Lemma 2.2. Let θ, η, δ, ρ be defined in (2.3), χ2, y−(χ), y+(χ) are defined in (2.13)–(2.15), respectively,
and θ and h satisfy (2.5). Define:

χ =

{ 1
δρ

( d1d2
l2 + d1η + d2θ + l2η(θ − δ

βr ), 0 < l ≤ l0,

0, l > l0,
(2.17)
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χ̂ = min
{
χ : [l

√
y+(χ)] − [l

√
y−(χ)] = 1

}
, (2.18)

where

l0 =

√√√√√d1η + d2θ +
√

(d1η + d2θ)2 − 4d1d2η(θ − δ
βr )

−2η(θ − δ
βr )

, (2.19)

and [·] is the integer part function,

τ0 j =
1
ω0

(arccos
(ω2

0 − θη)βr
δη

+ 2 jπ), ( j ∈ N0), (2.20)

τk j =
1
ωk

(arccos
ω2

k − (d1µk + θ)(d2µk + η)
δ(χρµk +

η

βr )
+ 2 jπ), (2.21)

where 0 ≤ k ≤ K, K = [l
√

y+(χ)], j ∈ N0,

(I) if θ < δ
βr ,

(i) if further 0 < χ ≤ χ, Eq (2.7) has only a pair of purely imaginary roots ±iω0 when τ = τ0 j

defined in (2.20);
(ii) if further χ > χ, Eq (2.7) has pairs of purely imaginary roots ±iωk when τ = τk j defined by

(2.21);

(II) if θ ≥ δ
βr , for given l > 0,

(i) if 0 < χ < χ̂, Eq (2.7) has no imaginary roots for any time delay τ > 0;
(ii) if χ ≥ χ̂, Eq (2.7) has pairs of purely imaginary roots ±iωk when τ = τk j defined by (2.21),

where k ≤ k ≤ K, k = [l
√

y−(χ)] + 1, K = [l
√

y+(χ)], j ∈ N0.

Proof. (I) It is well-known that Eq (2.7) has purely imaginary roots for k ≥ 1, and there must be at
least one µk for k ≥ 1 satisfying Eq (2.12). We know from Lemma 2.1 that y+(χ) is the unique positive
root of Eq (2.16) if θ < δ

βr . It is obvious from the monotonicity of µk that if µ1 ≥ y+(χ), then all other µk

will not satisfy Eq (2.12), which shows that Eq (2.7) has no purely imaginary roots. Obviously, y+(χ)
is an increasing function with respect to χ, and y+(0) is the minimum value of y+(χ), then we can solve
the critical value l0 by solving µ1|l=l0 = y+(0), l0 is defined in (2.19). When l > l0, there must be at
least µ1 < y+(χ) for all χ > 0. Now, we denote χ as the critical value for Eq (2.11) to have positive
roots for k ≥ 1. Then, we have χ = 0 when l > l0. When 0 < l ≤ l0, Eq (2.11) has no positive roots
for k ≥ 1 and 0 < χ ≤ χ, where χ is solved by y+(χ) = 1

l2 . When χ > χ, it exists some µk to satisfy
Eq (2.12) because µ1 = y+(χ) < y+(χ). Next, the number of the roots of Eq (2.11) can be determined

by calculating K2

l2 < y+(χ) and have K = [l
√

y+(χ)]. Therefore, from (2.10), we derive Eq (2.7) has
purely imaginary roots ±iωk at τk j defined by Eq (2.21) for 0 ≤ k ≤ K and j ∈ N0.

(II) If θ ≥ δ
βr and 0 < χ ≤ χ2, it’s obvious from the proof of Lemma 2.1 that Eq (2.12) has no

positive roots. Nevertheless, if χ > χ2, we know that Eq (2.12) holds for y−(χ) < µk < y+(χ). Then,
for given l > 0, the number of the roots of Eq (2.11) can be calculated by solving y−(χ) < k2

l2 < y+(χ)
and we obtain l

√
y−(χ) < k < l

√
y+(χ). Let ψ(χ) = [l

√
y+(χ)] − [l

√
y−(χ)], where [·] is the integer part

function. It is clear that ψ(χ) is an increasing piecewise function and ψ(χ2) = 0, so, for given l > 0,
it is impossible that Eq (2.11) has positive roots for k ≥ 1 and χ2 < χ < χ̂ with χ̂ as in (2.18). When
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χ ≥ χ̂, there must exist some µk, k ≥ 1 that Eq (2.11) has positive roots for given l > 0. Furthermore,
the value of the roots of Eq (2.11) can be solved by letting µk > y−(χ) and µK < y+(χ), and we obtain
k = [l

√
y−(χ)]+1 and K = [l

√
y+(χ)]. Then, we similarly solve from Eq (2.10) that Eq (2.7) has purely

imaginary roots ±iωk at τk j for k ≤ k ≤ K and j ∈ N0, where τk j is defined by (2.21).
So, the proof is finished.

Lemma 2.3. Let θ, η, δ, ρ be defined in (2.3), and θ, h satisfy (2.5). If θ < δ
βr and j = 0, Eqs (2.20)

and (2.21) can be rewritten as
τ00 =

1
ω0

arccos
(ω2

0 − θη)βr
δη

τk0(χ) =
1

ωk(χ)
arccos

ωk(χ)2 − (d1µk + θ)(d2µk + η)
δ(χρµk +

η

βr )
, 1 ≤ k ≤ K,

(2.22)

where K is the same as in Lemma 2.2. We have the following conclusions,

(I) τ00 is a constant, τk0(χ) (1 ≤ k ≤ K) is decreasing as χ increases; moreover, we
have lim

χ→+∞
τk0(χ) = 0;

(II) τk0(0) (0 ≤ k ≤ K) is monotonically increasing with respect to k, i.e., τ00(0) < τ10(0) < · · · <
τK0(0).

Proof. (I) It’s obviously that τ00 is a constant. When 1 ≤ k ≤ K, taking derivative of τk0(χ) in χ,
we have

d(τk0(χ))
dχ

= −
2ωkω

′
k(χ)(χρµk +

η

βr ) − ρµk(ω2
k − (d1µk + η)(d2µk + θ))

ωkδ(χρµk +
η

βr )2
√

1 − R2
k

−
ω′k(χ) arccos Rk

ω2
k

, (2.23)

where

Rk =
ω2

k − (d1µk + θ)(d2µk + η)
δ(χρµk +

η

βr )
.

Differentiating both sides of Eq (2.11) with respect to χ, we gain

ω′k(χ) =
δ2ρµk(ρµkχ +

η

βr )

2ωk(χ)3 + ωk(χ)((d1µk + θ)2 + (d2µk + η)2)
> 0,

then substituting ω′k(χ) into Eq (2.23), we have

d(τk0(χ))
dχ

= −
ρµk(d1µk + θ + d2µk + η)2(ω2

k + (d1µk + θ)(d2µk + η))

ωkδ(χρµk +
η

βr )2
√

1 − R2
k(2ω2

k + (d1µk + θ)2(d2µk + η)2)
−
ω′k(χ) arccos Rk

ω2
k

. (2.24)

It can be found that 0 < arccos Rk < π; therefore, d(τk0(χ))
dχ < 0, that is to say, τk0 is decreasing

as χ increases. Clearly, we can see that ωk → +∞ when χ → +∞, so it’s established lim
χ→+∞

τk0 =

lim
χ→+∞

arccos Rk
ωk
= 0.
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(II) When χ = 0, denoting µk = p, then τk0(0) (0 ≤ k ≤ K) and ωk(0) can be seen as a function
τ̃k0(p) and ω̃k(p), respectively, of p. Obviously, ω̃k(p) satisfies

ω̃k(p)4 + ((d1 p + θ)2 + (d2 p + η)2)ω̃k(p)2 + (d1 p + θ)2(d2 p + η)2 = δ2(
η

βr
)2, (2.25)

and
τ̃k0(p) =

1
ω̃k(p)

arccos R̃(p),

where

R̃(p) =
ω̃k(p)2 − (d1 p + θ)(d2 p + η)

δη/βr
.

Differentiating at both sides of Eq (2.25) with respect to p, we have

ω̃′k(p) = −
ω̃2

k(p)(d1(d1 p + θ) + d2(d2 p + η)) + d1(d1 p + θ)(d2 p + η)2 + d2(d1 p + θ)2(d2 p + η)

2ω̃3
k(p) + ω̃k(p)((d1 p + θ)2 + (d2 p + η)2)

< 0.

(2.26)
We take derivative of τ̃k0(p) with respect to p, and we get

d(τ̃k0(p))
dp

= −
βr(2ω̃k(p)ω̃′k(p) − d1(d1 p + θ) + d2(d2 p + η))

ρδω̃k(p)
√

1 − R̃(p)2
−
ω̃′k(p) arccos R̃(p)

ω̃2
k(p)

> 0. (2.27)

From Eq (2.27), we find that τ̃k0(p) is monotonically increasing with respect to p. Thus, τk0(0) is
increasing with respect to k, that is, τ00(0) < τ10(0) < · · · < τK0(0).

Afterward, we verify the transversality condition of Hopf bifurcation.

Lemma 2.4. Let θ, η, ρ, δ be defined in (2.3), and θ, h satisfy (2.5). We have

dRe(λ)
dτ

∣∣∣∣∣
τ=τk j

> 0.

Proof. To begin, we take the derivative at both sides of Eq (2.7) with respect to τ and obtain

2λλ′(τ) + (d1µk + d2µk + θ + η)λ′(τ) − δ(χρµk +
η

βr
)(λ′(τ)τ + λ)e−λτ = 0,

therefore,

λ′(τ) =
λδ(χρµk +

η

βr )e−λτ

2λ + (d1µk + d2µk + θ + η) − τδ(χρµk +
η

βr )e−λτ
, (2.28)

and (2.28) is equivalent to

1
λ′(τ)

=
(2λ + d1µk + d2µk + θ + η)eλτ

λδ(χρµk +
η

βr )
−
τ

λ
. (2.29)

Substituting λ = iωk and τ = τk j into the Eq (2.29), we have

Re(
1

λ′(τ)
)
∣∣∣∣∣
τ=τk j

=
2ωk cos(ωkτk j) + sin(ωkτk j)(d1µk + d2µk + θ + η)

ωkδ(χρµk +
η

βr )
, (2.30)
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and from Eq (2.10), we can obtain

Re(
1

λ′(τ)
)
∣∣∣∣∣
τ=τk j

=
2ωk(ω2

k − (d1µk + θ)(d2µk + η)) + ωk(d1µk + d2µk + θ + η)2

ωkδ2(χρµk +
η

βr )2
> 0. (2.31)

Thus, dRe(λ)
dτ

∣∣∣
τ=τk j

> 0, and the proof is completed.

Combining the Lemmas 2.2–2.4, we obtain important results on the stability and Hopf bifurcation
as follows.

Theorem 2.1. Let θ, η, δ, ρ be defined in (2.3), y+(χ), χ, τk j be defined in (2.15), (2.17), (2.21), and θ, h
satisfy (2.5). Denote

χ̄ = min
1≤k≤K

χk, χk is the solution of τ00 = τk0(χ), (2.32)

τ = min
1≤k≤K

τk0(χ), χ > χ̄. (2.33)

If θ < δ
βr , we have results as follows:

(I) (Bifurcation)

(i) if 0 < χ ≤ χ, system (1.3) undergoes Hopf bifurcations at τ = τ0 j for j ∈ N0 and τ00 = min
j∈N0

τ0 j

is the first critical bifurcation value. Moreover, the bifurcating periodic solutions at τ00 are
spatially homogeneous;

(ii) if χ < χ ≤ χ̄, system (1.3) undergoes mode-k Hopf bifurcations at τ = τk j for 0 ≤ k ≤ K,
j ∈ N0. Similarly, τ00 = min

0≤k≤K
τk0, so the bifurcating periodic solutions at τ00 are also

spatially homogeneous;
(iii) if χ > χ̄, system (1.3) undergoes mode-k Hopf bifurcations at τ = τk j for 0 ≤ k ≤ K, j ∈ N0.

Furthermore, the first Hopf bifurcation at τ defined by (2.33) is spatially nonhomogeneous;
(iv) if χ > χ, Hopf-Hopf bifurcation will occur because of the interaction of spatially homoge-

neous and nonhomogeneous Hopf bifurcations;

(II) (stability)

(i) if 0 < χ ≤ χ̄, (u∗, v∗) is locally asymptotically stable for 0 ≤ τ < τ00 and unstable for τ > τ00;
(ii) if χ > χ̄, (u∗, v∗) is locally asymptotically stable for 0 ≤ τ < τ and unstable for τ > τ.

Proof. From Lemmas 2.2–2.4, the necessary conditions for Hopf bifurcation to occur, i.e., the char-
acteristic equation of system (1.3) has purely imaginary roots, the transversality condition of Hopf
bifurcation is satisfied, thus system (1.3) indeed undergoes Hopf bifurcation at τ = τk j. It’s easy to
know τk0 = min

j∈N0
τk j (0 ≤ k ≤ K).

If 0 < χ ≤ χ, Eq (2.7) exists only a pair of purely imaginary roots when τ = τ0 j ( j ∈ N0), which
implies only spatially homogeneous Hopf bifurcation will emerge. The proof of (i) in (I) is finished.

If χ < χ ≤ χ̄, we know from Lemmas 2.2 and 2.4 that τk j (0 ≤ k ≤ K) are the Hopf bifurcation
values. From Lemma 2.3, τk0(χ) is decreasing in χ and lim

χ→∞
τk0(χ) = 0, together with τk0(0) > τ00 and

τ00 is a constant, so τk0 and τ00 must intersect at χk. We can define χ̄ as in (2.32), thus τ00 = min
0≤k≤K

τk0(χ)

for χ < χ̄. The proof of (ii) in (I) is finished.
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When χ > χ̄, τk j are still Hopf bifurcation values, and τk0 = min
j∈N0

τk j from Lemmas 2.2 and 2.4, but

the minimal critical value of τk0 will modify as χ changes, thus we define τ in (2.33) as the minimal
value. This finishes the proof of (iii) in (I).

It is well-known that τk j is a function with the variable χ, and τ00 is a constant in regard to χ so that
τ00 is a line parallel to the χ− axis in the τ − χ plane. However, τk0 decreases as χ increases and tends
to 0, τk0(0) > τ00 (1 ≤ k ≤ K), thus the spatially nonhomogeneous Hopf bifurcation curves τ = τk0(χ)
will interact with spatial homogeneous Hopf bifurcation curve τ00, so conclusion (iv) in (I) is proved.

It’s easy to obtain the stability results (II) from the bifurcation conclusions in (I).

Similarly, we have the stability and Hopf bifurcation results when θ ≥ δ
βr as follows.

Theorem 2.2. Let θ, η, δ, ρ be defined in (2.3), θ, h satisfy (2.5), and χ̂, τk j are defined in (2.18)
and (2.21), respectively. Let

τ∗ = min
k≤k≤K

τk0(χ), χ ≥ χ̂. (2.34)

If θ ≥ δ
βr , we have the results as follows.

(I) if 0 < χ < χ̂, system (1.3) has no Hopf bifurcation for any τ > 0, so (u∗, v∗) is locally asymptoti-
cally stable for τ > 0;

(II) if χ ≥ χ̂, system (1.3) undergoes spatially nonhomogeneous mode-k Hopf bifurcations near the
positive equilibrium (u∗, v∗) at τ = τk j for k ≤ k ≤ K, j ∈ N0. Moreover, τ∗ defined by (2.34) is the
first critical value for Hopf bifurcation, so (u∗, v∗) is locally asymptotically stable for 0 ≤ τ < τ∗,
and unstable for τ > τ∗.

The proof is analogous to Theorem 2.1, so we leave it out.

Remark 1. According to Theorem 2.1, it is demonstrated that χ just affects the appearance of spa-
tially nonhomogeneous Hopf bifurcation but has no effect on stability when θ < δ

βr . In addition, it is
impossible from Theorem 2.2 that the spatially homogeneous Hopf bifurcation will occur for θ ≥ δ

βr .

3. Numerical simulation

In this section, we will select appropriate parameters and use the mathematical software Matlab to
do numerical simulations for system (1.3), which will support our theoretical results.

3.1. Case I 0 ≤ θ < δ
βr

Taking the parameters as

d1 = 0.01, d2 = 0.02, r = 1, h = 0.2, s = 1, α = 2, β = 0.5, vp = 1, (3.1)

then we have the positive equilibrium (u∗, v∗) = (0.2095, 0.4190), l0 = 0.1809, δ = 0.2953, θ =
0.0351 < δ

βr = 0.5905, that is to say, the conditions in Theorem 2.1 are satisfied. It can be found
from Lemma 2.2 that χ is a function about l when l ≤ l0 and χ = 0 when l > l0. Only when χ > χ will
the spatial nonhomogeneous Hopf bifurcations will occur, thus we choose l = 0.1 < l0 and l = 1 > l0
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to draw the Hopf bifurcation curves diagrams and stable region in the χ − τ plane. The results are
shown in Figure 1. When l = 0.1 < l0, we have χ = 0.1698 and χ̄ = 0.2843. Figure 1(a) dis-
plays that the spatially nonhomogeneous Hopf bifurcation will emerge for χ > χ. When l = 1 > l0,
Figure 1(b) displays that the spatial nonhomogeneous Hopf bifurcations will emerge for χ > χ = 0,
and we calculate χ̄ = 0.1751. From Figure 1(b), we can see that the Hopf bifurcation curves will
intersect with each other, hence Hopf-Hopf bifurcation will occur at the intersecting points. Then, we
take some points in different areas of Figure 1(b) to do numerical simulations with the initial values
(u0, v0) = (u∗ + 0.0004 cos x, v∗ + 0.0002 cos x); the results are illustrated in Figures 2–4.

For l = 1 > l0, we take χ = 0.17 < χ̄, τ = 1.8 < τ00 = 2.09, and the unique positive equilibrium
(u∗, v∗) = (0.2095, 0.4190) is stable (see Figure 2). Taking χ = 0.16 < χ̄, τ = 2.095 > τ00, we observe
the spatially homogeneous periodic solution (see Figure 3). When χ > χ̄, we take the concrete values
of χ and τ as P3 − P5 of Figure 1(b), the spatially nonhomogeneous periodic solutions can appear near
the Hopf bifurcation curve τk0. Moreover, there are various modes of periodic patterns when the values
of χ are different (see Figure 4).

(a) (b)

Figure 1. The bifurcation diagrams of system (1.3) in the χ − τ plane with parame-
ter chosen as in (3.1). (a) the Hopf bifurcation curves and stable region for l = 0.1 <

l0; (b) the Hopf bifurcation curves and stable region for l = 1 > l0. The points
P1 (0.17, 1.8), P2 (0.16, 2.095), P3 (0.18, 2.15), P4 (0.19, 2.15), and P5 (0.217, 2.15) marked
in (b) are chosen for the numerical simulations.
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(a) (b)

Figure 2. Convergence to the positive equilibrium (u∗, v∗) = (0.2095, 0.4190) of system (1.3)
in the local stability region with parameters taken as (3.1) and l = 1 for P1 (0.17, 1.8).

(a) (b)

Figure 3. The stability of the spatially homogeneous periodic solutions of (1.3) with param-
eters taken as (3.1) and l = 1 for P2 (0.16, 2.095).
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Numerical simulations of system (1.3) with the parameters as in (3.1) and l =
1. (a),(b)–(e),(f) illustrate the stability of the spatially nonhomogeneous periodic solutions
for P3 (0.18, 2.15), P4 (0.19, 2.15), and P5 (0.217, 2.15), respectively, which have different
modes.
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3.2. Case II θ ≥ δ
βr

By taking parameters as

d1 = 0.1, d2 = 0.2, r = 0.5, s = 0.5, α = 1, β = 4, h = 0.3, vp = 1, (3.2)

we obtain u∗ = 0.6644, v∗ = 0.3322, δ = 0.0712, θ = 0.6593 > δ
βr = 0.0356; by direct calculation, the

conditions in Theorem 2.2 are satisfied. Let the domain size l = 1, then we calculate χ̂ = 15.2075.
From Theorem 2.2, the Hopf bifurcation curves can be drawn in the χ−τ plane and the stability region
is marked as shown in Figure 5. We find that Hopf bifurcation curves τ10 and τ30 intersect at point
R13 (22.12, 6.687), which implies Hopf-Hopf bifurcation arising. Next, we choose two points P6 (25, 2)
and P7 (22, 5) in Figure 5 to perform numerical simulations with the initial value (u0, v0) = (u∗ +
0.005 cos x, v∗ − 0.005 cos x). For P6 (25, 2) belonging to the stable region in Figure 5, Figure 6(a),(b)
demonstrates the stability of (u∗, v∗). According to Theorem 2.2, the nonhomogeneous Hopf bifurcation
will arise near the Hopf bifurcation curves τk0 (k ≤ k ≤ K) when χ > χ̂, so the value of χ and τ taken
in P7 (22, 5) will induce spatially nonhomogeneous Hopf bifurcating periodic solutions, which have
different modes (see Figure 6(c),(d)).

Figure 5. The stability region and Hopf bifurcation curves in the χ− τ plane with the param-
eters are chosen as in (3.2). The points P6 (25, 2) and P7 (22, 5) are chosen for the numerical
simulations.
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(a) (b)

(c) (d)

Figure 6. Numerical simulations of system (1.3) with the parameters as in (3.2) and l = 1.
(a), (b) illustrate the stability of the unique positive equilibrium (u∗, v∗) = (0.6644, 03322) for
P6 (25, 2); (c), (d) illustrate the stability of the spatially nonhomogeneous periodic solutions
for P7 (22, 5), which have different modes.

4. Conclusions

We explore a delayed diffusive prey-predator model with prey-taxis involving the volume-filling
mechanism in this paper. Based on the taxis coefficient χ and time delay τ, we can classify system (1.3)
into the following four cases: (i) χ = 0, τ = 0; (ii) χ > 0, τ = 0; (iii) χ = 0, τ > 0; (iv) χ > 0, τ > 0.
Analyzing the stability and bifurcation, we obtained different pattern formations for different cases.
For case (i), we know from [22] that the unique positive equilibrium (u∗, v∗) is locally asymptotically
stable if θ ≥ 0, 0 < h < 1. Hao et al. in [15] studied the case (ii), and suggested that the prey-taxis
with the volume-filling mechanism will not induce Hopf bifurcation but the steady state bifurcation
will arise. In the present paper, we explore the cases (iii) and (iv). Coincidentally the characteristic
equation of the linear system of (1.3) for case (iii) is the same as that in [22] and the author found
that Hopf bifurcation will occur due to the introduction of time delay, the periodic solutions at the first
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critical value are spatially homogeneous, and Hopf-Hopf bifurcation will not arise. We mainly discuss
case (iv) with the effect of prey-taxis with volume-filling mechanism and time delay, more complicated
pattern formation that will appear, and how the results show that the system undergoes Hopf bifurction.
Specifically, for 0 < θ < δ

βr , the Hopf bifurcating periodic solutions near the first critical value of τ may
be spatially homogeneous or nonhomogeneous with the different values of χ. When χ is larger than
the critical value χ, the periodic patterns with different modes will arise for different values of χ. It can
be proved that spatially homogeneous and nonhomogeneous bifurcation curves will intersect, which
leads to Hopf-Hopf bifurcations. When θ ≥ δ

βr , only spatially nonhomogeneous Hopf bifurcation
will emerge. Moreover, we can observe from the numerical simulations that the nonhomogeneous
Hopf bifurcation curves will intersect, which leads to the Hopf-Hopf bifurcation. The obtained results
indicate that both prey-taxis and time delay play substantial roles in the pattern formation of prey-
predator interactions, which may help with a deeper understanding of ecological systems.
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