Research article

On derivations of Leibniz algebras

  • Received: 12 May 2024 Revised: 10 July 2024 Accepted: 17 July 2024 Published: 29 July 2024
  • Leibniz algebras are non-antisymmetric generalizations of Lie algebras. In this paper, we investigate the properties of complete Leibniz algebras under certain conditions on their extensions. Additionally, we explore the properties of derivations and direct sums of Leibniz algebras, proving several results analogous to those in Lie algebras.

    Citation: Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame. On derivations of Leibniz algebras[J]. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214

    Related Papers:

  • Leibniz algebras are non-antisymmetric generalizations of Lie algebras. In this paper, we investigate the properties of complete Leibniz algebras under certain conditions on their extensions. Additionally, we explore the properties of derivations and direct sums of Leibniz algebras, proving several results analogous to those in Lie algebras.



    加载中


    [1] A. Bloh, A generalization of the concept of a Lie algebra, Dokl. Akad. Nauk SSSR, 165 (1965), 471–473.
    [2] J. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, in Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, 44 (1993), 127–151.
    [3] N. Jacobson, Lie Algebras, Dover Publications, New York, 1979.
    [4] D. J. Meng, Some results on complete Lie algebras, Commun. Algebra, 22 (1994), 5457–5507. https://doi.org/10.1080/00927879408825141 doi: 10.1080/00927879408825141
    [5] J. M. Ancochea Bermúdez, R. Campoamor-Stursberg, On a complete rigid Leibniz non-Lie algebra in arbitrary dimension, Linear Algebra Appl., 438 (2013), 3397–3407. https://doi.org/10.1016/j.laa.2012.12.048 doi: 10.1016/j.laa.2012.12.048
    [6] K. Boyle, K. C. Misra, E. Stitzinger, Complete Leibniz algebras, J. Algebra, 557 (2020), 172–180. https://doi.org/10.1016/j.jalgebra.2020.04.016 doi: 10.1016/j.jalgebra.2020.04.016
    [7] Y. Kongsomprach, S. Pongprasert, T. Rungratgasame, S. Tiansa-ard, Completeness of low-dimensional Leibniz algebras: Annual Meeting in Mathematics 2023, Thai J. Math., 22 (2024), 165–178.
    [8] G. R. Biyogmam, C. Tcheka, A note on outer derivations of Leibniz algebras, Commun. Algebra, 49 (2021), 2190–2198. https://doi.org/10.1080/00927872.2020.1867154 doi: 10.1080/00927872.2020.1867154
    [9] S. Patlertsin, S. Pongprasert, T. Rungratgasame, On inner derivations of Leibniz algebras, Mathematics, 12 (2024), 1152. https://doi.org/10.3390/math12081152 doi: 10.3390/math12081152
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(652) PDF downloads(55) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog