In this paper, the concepts of the $ \alpha- $pseudo-differentiability and the pseudo-Stieltjes integrability are proposed, and the corresponding transformation theorems and Newton–Leibniz formula are established. The obtained results provide a framework for analyzing nonlinear differential equations.
Citation: Caiqin Wang, Hongbin Xie, Zengtai Gong. Pseudo-Stieltjes calculus: $ \alpha- $pseudo-differentiability, the pseudo-Stieltjes integrability and applications[J]. Electronic Research Archive, 2024, 32(11): 6467-6480. doi: 10.3934/era.2024302
In this paper, the concepts of the $ \alpha- $pseudo-differentiability and the pseudo-Stieltjes integrability are proposed, and the corresponding transformation theorems and Newton–Leibniz formula are established. The obtained results provide a framework for analyzing nonlinear differential equations.
[1] | E. Pap, Null-Additive Set Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 1995. https://doi.org/10.1093/ietfec/e90-a.5.887 |
[2] | E. Pap, Decomposable measures and nonlinear equations, Fuzzy Sets Syst., 92 (1997), 205–221. https://doi.org/10.1016/S0165-0114(97)00171-1 doi: 10.1016/S0165-0114(97)00171-1 |
[3] | E. Pap, I. $\check{S}$tajner, Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, optimization, system theory, Fuzzy Sets Syst., 102 (1999), 393–415. https://doi.org/10.1016/S0165-0114(98)00214-0 doi: 10.1016/S0165-0114(98)00214-0 |
[4] | E. Pap, Pseudo-additive measures and their applications, in Handbook of Measure Theory (eds. E. Pap), Elsevier, North-Holland, Amsterdam, (2002), 1403–1468. https://doi.org/10.1016/B978-044450263-6/50036-1 |
[5] | D. Dubois, M. Prade, A class of fuzzy measures based on triangular norms: a general framework for the combination of uncertain information, Int. J. Gen. Syst., 8 (1982), 43–61. https://doi.org/10.1080/03081078208934833 doi: 10.1080/03081078208934833 |
[6] | D. Dubois, M. Prade, Fuzzy sets and systems: Theory and applications, in Journal of the Operational Research Society, Academic Press, (1980). https://doi.org/10.2307/2581310 |
[7] | J. Aczel, Lectures on Functional Equations and their Applications, Academic Press, (1966). https://doi.org/10.1016/S0001-8708(77)80038-8 |
[8] | C. H. Ling, Representation of associative functions, Pub. Math. Debrecen, 12 (1965), 189–212. https://doi.org/10.5486/pmd.1965.12.1-4.19 doi: 10.5486/pmd.1965.12.1-4.19 |
[9] | A. Markov$\acute{a}$, B. Rie$\check{c}$an, On the double $g$-integral, Novi Sad J. Math., (1996), 67–70. |
[10] | H. Ichihashi, H. Tanaka, K. Asai, Fuzzy integrals based on pseudo-additions and multiplications, J. Math. Anal. Appl., 130 (1988), 354–364. https://doi.org/10.1016/0022-247X(88)90311-3 doi: 10.1016/0022-247X(88)90311-3 |
[11] | M. Sugeno, T. Murofushi, Pseudo-additive measures and integrals, J. Math. Anal. Appl., 122 (1987), 197–222. https://doi.org/10.1016/0022-247X(87)90354-4 doi: 10.1016/0022-247X(87)90354-4 |
[12] | Z. T. Gong, T. Xing, Pseudo-differentiability, Pseudo-integrability and nonlinear differential equations, J. Comput. Anal. Appl., 16 (2014), 713–721. |
[13] | D. L. Zhang, R. Mesiar, E. Pap, Jensen's inequality for Choquet integral revisited and a note on Jensen's inequality for generalized Choquet integral, Fuzzy Sets Syst., 430 (2022), 79–87. https://doi.org/10.1016/j.fss.2021.09.004 doi: 10.1016/j.fss.2021.09.004 |
[14] | D. L. Zhang, R. Mesiar, E. Pap, Jensen's inequalities for standard and generalized asymmetric Choquet integrals, Fuzzy Sets Syst., 457 (2023), 119–124. https://doi.org/10.1016/j.fss.2022.06.013 doi: 10.1016/j.fss.2022.06.013 |
[15] | A. Markov$\acute{a}$, A note on $g$-derivative and $g$-integral, Tatra Mt. Math. Publ., 8 (1996), 71–76. |
[16] | R. Mesiar, Pseudo-linear integrals and derivatives based on a generator $g$, Tatra Mt. Math. Publ., 8 (1996), 67–70. |