In this paper, we introduce a new coupled system of differential inclusions involving with Hadamard fractional orders. By applying a fixed point theorem for three operators containing $ x\in{AxBx+Cx} $ in Banach algebras, we get an existence result for the discussed system via multi-valued maps in a Banach space. An example is provided to support the validation of the theoretical result achieved.
Citation: Lili Zhang, Chengbo Zhai. An existence result for a new coupled system of differential inclusions involving with Hadamard fractional orders[J]. Electronic Research Archive, 2024, 32(11): 6450-6466. doi: 10.3934/era.2024301
In this paper, we introduce a new coupled system of differential inclusions involving with Hadamard fractional orders. By applying a fixed point theorem for three operators containing $ x\in{AxBx+Cx} $ in Banach algebras, we get an existence result for the discussed system via multi-valued maps in a Banach space. An example is provided to support the validation of the theoretical result achieved.
[1] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Press, Singapore, 2000. https://doi.org/10.1142/3779 |
[2] | G. Wang, K. Pei, Y. Chen, Stability analysis of nonlinear Hadamard fractional differential system, J. Franklin Inst., 356 (2019), 6538–6546. https://doi.org/10.1016/j.jfranklin.2018.12.033 doi: 10.1016/j.jfranklin.2018.12.033 |
[3] | Y. Zhou, J. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. https://doi.org/10.1142/9069 |
[4] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 204 (2006). |
[5] | I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, New York, USA, 1999. |
[6] | B. Ahmad, S. K. Ntouyas, Hilfer-Hadamard fractional boundary value problems with nonlocal mixed boundary conditions, Fractal Fractional, 5 (2022), 195. http://dx.doi.org/10.3390/fractalfract5040195 doi: 10.3390/fractalfract5040195 |
[7] | J. Henderson, R. Luca, A. Tudorache, Positive solutions for a system of coupled semipositone fractional boundary value problems with sequential fractional derivatives, Mathematics, 9 (2021), 753. http://dx.doi.org/10.3390/math9070753 doi: 10.3390/math9070753 |
[8] | J. Xu, C. S. Goodrich, Y. Cui, Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 113 (2019), 1343–1358. http://dx.doi.org/10.1007/s13398-018-0551-7. doi: 10.1007/s13398-018-0551-7 |
[9] | M. Li, J. Wang, The existence and averaging principle for Caputo fractional stochastic delay differential systems, Fractional Calculus Appl. Anal., 26 (2023), 893–912. http://dx.doi.org/10.1007/S13540-023-00146-3 doi: 10.1007/S13540-023-00146-3 |
[10] | W. Wang, Unique positive solutions for boundary value problem of p-Laplacian fractional differential equation with a sign-changed nonlinearity Nonlinear. Anal. Model., 27 (2022), 1110–1128. http://dx.doi.org/10.15388/NAMC.2022.27.29503 |
[11] | H. Afshari, E. Karapinar, A discussion on the existence of positive solutions of the boundary value problems via $\psi$-Hilfer fractional derivative on b-metric spaces, Adv. Differ. Equations, 616 (2020). https://doi.org/10.1186/s13662-020-03076-z |
[12] | J. Hadamard, Essai sur l'étude des fonctions données par leur développement de Taylor, Mat. Pure Appl. Ser., 8 (1892), 101–186. |
[13] | J. Xu, J. Jiang, D. O'Regan, Positive solutions for a class of p-Laplacian Hadamard fractional-order three-point boundary value problems, Mathematics, 8 (2020), 308. http://dx.doi.org/10.3390/math8030308 doi: 10.3390/math8030308 |
[14] | B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham, 2017. |
[15] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. http://dx.doi.org/10.1016/S0022-247X(02)00049-5 doi: 10.1016/S0022-247X(02)00049-5 |
[16] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. https://doi.org/10.1016/S0022-247X(02)00066-5 doi: 10.1016/S0022-247X(02)00066-5 |
[17] | B. C. Dhage, A fixed point theorem in Banach algebras involving three operators with applications, Kyungpook Math. J., 44 (2004), 145–155. |
[18] | K. Deimling, Multivalued Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, 1992. |
[19] | A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys., 13 (1965), 781–786. |
[20] | B. C. Dhage, Some variants of two basic hybrid fixed-point theorems of Krasnoselskii and Dhage with applications, Nonlinear Stud., 25 (2018), 559–573. |
[21] | K. Buvaneswari, P. Karthikeyan, D. Baleanu, On a system of fractional coupled hybrid Hadamard differential equations with terminal conditions, Adv. Differ. Equations, 1 (2020), 419–430. https://doi.org/10.1186/s13662-020-02790-y doi: 10.1186/s13662-020-02790-y |
[22] | B. C. Dhage, On solvability of operator inclusions $x\in{AxBx+Cx}$ in banach alegebras and differntial inclusions, Commun. Appl. Anal., 14 (2010), 567–596. |
[23] | A. Petrusel, Multivalued operators and continuous selections. The fixed points set, Pure Math. Appl., 9 (1998), 165–170. |
[24] | B. C. Dhage, Multi-valued mappings and fixed points I, Tamkang J. Math., 37 (2006), 27-46. |
[25] | M. Safia, H. Elhabib, B. Mohamad, Existence and uniqueness results of fractional differential inclusions and equations in Sobolev fractional spaces, Axioms, 12 (2023), 1063. http://dx.doi.org/10.3390/axioms12111063 doi: 10.3390/axioms12111063 |
[26] | S. Nazari, M. Esamei, An existence of the solution for generalized system of fractional q-differential inclusions involving p-Laplacian operator and sequential derivatives, Bound. Value Probl., 117 (2024), 117–144. https://doi.org/10.1186/s13661-024-01936-1 doi: 10.1186/s13661-024-01936-1 |