Assume that $ G $ is a finite group. The coprime graph of $ G $, denoted by $ \Gamma(G) $, is an undirected graph whose vertex set is $ G $ and two distinct vertices $ x $ and $ y $ of $ \Gamma(G) $ are adjacent if and only if $ (o(x), o(y)) = 1 $, where $ o(x) $ and $ o(y) $ are the orders of $ x $ and $ y $, respectively. This paper gives a characterization of all finite groups with AT-free coprime graphs. This answers a question raised by Swathi and Sunitha in Forbidden subgraphs of co-prime graphs of finite groups. As applications, this paper also classifies all finite groups $ G $ such that $ \Gamma(G) $ is AT-free if $ G $ is a nilpotent group, a symmetric group, an alternating group, a direct product of two non-trivial groups, or a sporadic simple group.
Citation: Huani Li, Xuanlong Ma. Finite groups whose coprime graphs are AT-free[J]. Electronic Research Archive, 2024, 32(11): 6443-6449. doi: 10.3934/era.2024300
Assume that $ G $ is a finite group. The coprime graph of $ G $, denoted by $ \Gamma(G) $, is an undirected graph whose vertex set is $ G $ and two distinct vertices $ x $ and $ y $ of $ \Gamma(G) $ are adjacent if and only if $ (o(x), o(y)) = 1 $, where $ o(x) $ and $ o(y) $ are the orders of $ x $ and $ y $, respectively. This paper gives a characterization of all finite groups with AT-free coprime graphs. This answers a question raised by Swathi and Sunitha in Forbidden subgraphs of co-prime graphs of finite groups. As applications, this paper also classifies all finite groups $ G $ such that $ \Gamma(G) $ is AT-free if $ G $ is a nilpotent group, a symmetric group, an alternating group, a direct product of two non-trivial groups, or a sporadic simple group.
[1] | A. Kelarev, Graph Algebras and Automata, CRC Press, Boca Raton, 2003. https://doi.org/10.1201/9781482276367 |
[2] | A. Kelarev, J. Ryan, J. Yearwood, Cayley graphs as classifiers for data mining: The influence of asymmetries, Discrete Math., 309 (2009), 5360–5369. https://doi.org/10.1016/j.disc.2008.11.030 doi: 10.1016/j.disc.2008.11.030 |
[3] | J. Abawajy, A. Kelarev, M. Chowdhury, Power graphs: A survey, Electron. J. Graph Theory Appl., 1 (2013), 125–147. http://doi.org/10.5614/ejgta.2013.1.2.6 |
[4] | R. Brauer, K. A. Fowler, On groups of even order, Ann. Math., 62 (1955), 565–583. https://doi.org/10.2307/1970080 |
[5] | X. Ma, H. Wei, L. Yang, The coprime graph of a group, Int. J. Group Theory, 3 (2014), 13–23. https://doi.org/10.22108/IJGT.2014.4363 |
[6] | H. R. Dorbidi, A note on the coprime graph of a group, Int. J. Group Theory, 5 (2016), 17–22. https://doi.org/10.22108/IJGT.2016.9125 doi: 10.22108/IJGT.2016.9125 |
[7] | K. Selvakumar, M. Subajini, Classification of groups with toroidal coprime graphs, Australas. J. Combinatorics, 69 (2017), 174–183. |
[8] | J. Hamm, A. Way, Parameters of the coprime graph of a group, Int. J. Group Theory, 10 (2021), 137–147. https://doi.org/10.22108/IJGT.2020.112121.1489 doi: 10.22108/IJGT.2020.112121.1489 |
[9] | T. A. Alraqad, M. S. Saeed, E. S. Alshawarbeh, Classification of groups according to the number of end vertices in the coprime graph, Indian J. Pure Appl. Math., 52 (2021), 105–111. http://doi.org/10.1007/s13226-021-00132-6 doi: 10.1007/s13226-021-00132-6 |
[10] | C. Lekkerkerker, J. Boland, Representation of a finite graph by a set of intervals on the real line, Fundam. Math., 51 (1962), 45–64. https://doi.org/10.4064/FM-51-1-45-64 doi: 10.4064/FM-51-1-45-64 |
[11] | M. C. Golumbic, C. L. Monma, W. T. Trotter Jr., Tolerance graphs, Discrete Appl. Math., 9 (1984), 157–170. https://doi.org/10.1016/0166-218X(84)90016-7 |
[12] | V. V. Swathi, M. S. Sunitha, Forbidden subgraphs of co-prime graphs of finite groups, Trans. Combinatorics, 14 (2025), 109–116. |
[13] | A. L. Delgado, Y. Wu, On locally finite groups in which every element has prime power order, Illinois J. Math., 46 (2002), 885–891. https://doi.org/10.1215/ijm/1258130990 doi: 10.1215/ijm/1258130990 |
[14] | R. Curtis, R. Wilson, J. H. Conway, S. P. Norton, R. A. Parker, An ATLAS of Finite Groups, Oxford University Press, Oxford, 2003. |