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Abstract: Assume that G is a finite group. The coprime graph of G, denoted by Γ(G), is an undirected
graph whose vertex set is G and two distinct vertices x and y of Γ(G) are adjacent if and only if
(o(x), o(y)) = 1, where o(x) and o(y) are the orders of x and y, respectively. This paper gives a
characterization of all finite groups with AT-free coprime graphs. This answers a question raised by
Swathi and Sunitha in Forbidden subgraphs of co-prime graphs of finite groups. As applications, this
paper also classifies all finite groups G such that Γ(G) is AT-free if G is a nilpotent group, a symmetric
group, an alternating group, a direct product of two non-trivial groups, or a sporadic simple group.
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1. Introduction

In the field of algebraic graph theory, the study of graph representations according to their algebraic
structures is a popular and interesting research topic. For example, a well-known graph representation
from the algebraic structure group is the Cayley graph, which has a long history of research. On
the other hand, graph representations of some algebraic structures have been actively studied in the
literature, because of some valuable applications [1, 2].

One can define a special graph on a group, such as, power graph [3] and commuting graph [4].
Considering the order of an element in a group is one of the most basic and important concepts in
group theory, we may define a graph over a group using its element order. Given a finite group G,
the coprime graph of G, denoted by Γ(G), is the undirected graph with vertex set G, and two distinct
x, y ∈ G are adjacent if and only if o(x) and o(y) are relatively prime, namely, (o(x), o(y)) = 1, where
o(x) and o(y) are the orders of x and y, respectively. In 2014, the authors [5] introduced the concept of
a coprime graph of a group. Afterwards, Dorbidi [6] proved that for every finite group G, the clique
number of Γ(G) is equal to the chromatic number of Γ(G), namely, Γ(G) is a weakly perfect graph.
Also, Dorbidi [6] classified such finite groups whose coprime graph is a complete r-partite graph.
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In 2017, Selvakumar and Subajini [7] obtained all finite groups G such that Γ(G) is toroidal. In 2021,
Hamm and Way [8] determined the independence number of the coprime graph on a dihedral group,
and they also studied this question: which coprime graphs are perfect? Alraqad et al. [9] classified the
finite groups whose coprime graph has exactly three end-vertices.

Every graph considered in our paper is undirected without loops and multiple edges. Let Γ and ∆
be two graphs. If Γ contains no induced subgraph isomorphic to ∆, then Γ is called a ∆-free graph.
This is equivalent to saying that ∆ is a forbidden subgraph of Γ. Three independent vertices of a graph
form an asteroidal triple if every two of them are connected by a path avoiding the neighborhood
of the third one. A simple graph is called asteroidal triple-free (AT-free, for short) if it contains no
asteroidal triple [10]. The AT-free graphs provide a common generalization of interval, permutation,
trapezoid, and cocomparability graphs. In [10], Lekkerkerker and Boland demonstrated the importance
of asteroidal triples in the theorem: a graph is an interval graph if and only if it is chordal and AT-
free. Thus, it appears that the condition of being AT-free prohibits a chordal graph from growing in
three directions at once. Later, Golumbic et al. [11] showed that cocomparability graphs (and, thus,
permutation and trapezoid graphs) are also AT-free. In [12], Swathi and Sunitha studied the finite
groups whose co-prime graphs are C4-free, claw-free, cographs, split-graphs, and AT-free. Also, they
proposed the following question.

Question 1.1. ( [12]) Find a characterization for the finite groups whose coprime graphs are AT-free.

The purpose of this paper is to give a characterization of the finite groups whose coprime graphs
are AT-free (see Theorem 2.3). This gives an answer to Question 1.1. As applications, we classify the
finite groups G such that Γ(G) is AT-free if G is a nilpotent group (see Corollary 2.5), a symmetric
group (see Proposition 2.7), an alternating group (see Proposition 2.7), a direct product of two non-
trivial groups (see Proposition 2.8), or a sporadic simple group (see Proposition 2.10).

2. Main results

This section will prove our main results. Every group considered in this paper is finite. For
convenience, we always assume that G is a finite group with the identity e. Denote by πe(G) and π(G)
the set of orders of elements of G and the set of prime divisors of |G|, respectively. As usual, denote
by Zn the cyclic group having order n. Given a graph, say Γ, denote by V(Γ) and E(Γ) the vertex set
and edge set of Γ, respectively. If {x, y} ∈ E(Γ), then we also denote this by x − y. In a graph, we use
x1 − x2 − · · · − xn to denote a path of length n. The neighborhood of a vertex x in Γ, denoted by N(x),
is the set {v ∈ V(Γ) : v − x}.

We first give two results before giving the proof of our main theorem.

Observation 2.1. (1) Suppose that {p1 p2, p1 p3, p1 p4} ⊆ πe(G), where p1, p2, p3, p4 are pairwise
distinct primes. Let a, b, c ∈ G with o(a) = p1 p2, o(b) = p1 p3, and o(c) = p1 p4. Then a − cp1 − b is a
path such that N(c) ∩ {a, cp1 , b} = ∅, a − bp1 − c is a path such that N(b) ∩ {a, bp1 , c} = ∅, and
b − ap1 − c is a path such that N(a) ∩ {b, ap1 , c} = ∅. As a result, {a, b, c} is an AT in Γ(G).

(2) Suppose that {p1 p2, p1 p3, p2 p3} ⊆ πe(G), where p1, p2, p3 are pairwise distinct primes. Let
a, b, c ∈ G with o(a) = p1 p2, o(b) = p1 p3, and o(c) = p2 p3. Then a − cp2 − cp3 − b is a path such
that N(c) ∩ {a, cp2 , cp3 , b} = ∅, a − bp1 − bp3 − c is a path such that N(b) ∩ {a, bp1 , bp3 , c} = ∅, and
b − ap1 − ap2 − c is a path such that N(a) ∩ {b, ap1 , ap2 , c} = ∅. As a result, {a, b, c} is an AT in Γ(G).
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Lemma 2.2. ( [12]) Let x, y ∈ G. Then π(⟨x⟩) ⊆ π(⟨y⟩) if and only if N(y) ⊆ N(x) in Γ(G).

Theorem 2.3. Let G be a finite group. Then Γ(G) is AT-free if and only if neither {p1 p2, p1 p3, p1 p4}

nor {p1 p2, p1 p3, p2 p3} is a subset of πe(G) where p1, p2, p3, p4 are pairwise distinct primes.

Proof. The necessity follows trivially from Observation 2.1. We next prove the sufficiency. Suppose
that neither {p1 p2, p1 p3, p1 p4} nor {p1 p2, p1 p3, p2 p3} is a subset of πe(G); here p1, p2, p3, p4 are
pairwise distinct primes. Then it is clear that πe(G) has no element, which is a product of three
pairwise distinct primes. Assume, to the contrary, that Γ(G) has an AT, say {x1, x2, x3}. If
π(⟨xi⟩) ⊆ π(⟨x j⟩) for two distinct i, j ∈ {1, 2, 3} and t ∈ {1, 2, 3} \ {i, j}, then by Lemma 2.2, we have
that every path from x j to xt must contain at least one vertex in N(xi); this contradicts that {x1, x2, x3}

is an AT. It follows that π(⟨xi⟩) ⊈ π(⟨x j⟩) for each two distinct i, j ∈ {1, 2, 3}. Since {x1, x2, x3} is an
independent set of Γ(G), it follows that for any i ∈ {1, 2, 3}, o(xi) is not a prime power. As a result,
|π(⟨xi⟩)| = 2 for any i ∈ {1, 2, 3}.

Now let π(⟨x1⟩) = {p1, p2} where p1 and p2 are distinct primes. Note that (o(x1), o(x2)) , 1. We
may assume that π(⟨x2⟩) = {pi, p3}, where i = 1 or 2 and p3 is a prime, which is different from p1 and
p2. Similarly, we also can conclude that π(⟨x3⟩) = {p j, p4}, where j = 1 or 2 and p4 is a prime, which
is different from p1 and p2. If p3 = p4, then i , j, and so {p1 p2, p1 p3, p2 p3} ⊆ πe(G), a contradiction.
Now assume that p3 , p4. Since (o(x2), o(x3)) , 1, it must be that i = j. It follows that either
{p1 p2, p1 p3, p1 p4} ⊆ πe(G) or {p1 p2, p2 p3, p2 p4} ⊆ πe(G), which is impossible. Consequently, Γ(G) is
AT-free. The proof is now complete. □

Corollary 2.4. (1) If |π(G)| ≤ 2, then Γ(G) is AT-free; (2) Let π(G) = {p1, p2, p3}. Then Γ(G) is AT-free
if and only if {p1 p2, p1 p3, p2 p3} ⊈ πe(G); (3) If Γ(G) is AT-free and |π(G)| ≥ 4, then Z(G) = {e}.

Recall that a finite group is nilpotent if and only if it is the direct product of its Sylow subgroups. In
particular, in a finite nilpotent group, two elements a, b with (o(a), o(b)) = 1 must commute. Thus, if G
is a nilpotent group such that π(G) = {p1, p2, p3} for different primes p1, p2, p3, then G has elements of
order p1 p2 p3. The following result classifies all nilpotent groups whose coprime graphs are AT-free.

Corollary 2.5. Let G be a nilpotent group. Then Γ(G) is AT-free if and only if G = P × Q, where P
and Q are respectively a p-group and a q-group for distinct primes p and q.

Clearly, for any subgroup H of G, Γ(H) is an induced subgraph of Γ(G). Thus, we have the
following result.

Observation 2.6. If Γ(G) is AT-free, then Γ(H) is also AT-free for any subgroup H of G.

The symmetric group of order n!, denoted by Sn, is the group consisting of all permutations on
n objects. As we know, the symmetric group is important in many different areas of mathematics,
including combinatorics and group theory, since every finite group is a subgroup of some symmetric
group. In Sn, the set of all even permutations is a group, which is called the alternating group on n
objects and is denoted by An. Note that An is a simple group for any n ≥ 5.

Proposition 2.7. For symmetric groups and alternating groups, we have the following:

(1) The graph Γ(Sn) is AT-free if and only if n ≤ 7;
(2) The graph Γ(An) is AT-free if and only if n ≤ 8.
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Proof. (1) We first prove that Γ(S8) is not an AT-free graph. Note that the facts that o((1, 2)(3, 4, 5)) =
6, o((1, 2)(3, 4, 5, 6, 7)) = 10, and o((1, 2, 3)(4, 5, 6, 7, 8)) = 15. As a consequence, we have that
{6, 10, 15} ⊆ πe(S8), and so by Theorem 2.3, Γ(S8) is not AT-free, as desired. Now by Observation 2.6,
it suffices to prove that Γ(S7) is AT-free. Note that πe(S7) = {1, 2, 3, 4, 5, 6, 7, 10, 12}. Since S7 has no
elements of order 15, it follows from Theorem 2.3 that Γ(S7) is AT-free, as desired.

(2) We first prove that Γ(A9) is not an AT-free graph. Note that the facts that
o((1, 2)(3, 4, 5)(6, 7)) = 6, o((1, 2)(3, 4, 5, 6, 7)(8, 9)) = 10, and o((1, 2, 3)(4, 5, 6, 7, 8)) = 15. Thus, we
have that {6, 10, 15} ⊆ πe(A9), which implies that Γ(A9) is not AT-free by Theorem 2.3, as desired.
Now in view of Observation 2.6, it suffices to prove that Γ(A8) is AT-free. It is easy to check that
πe(A8) = {1, 2, 3, 4, 5, 6, 7, 15}, so πe(A8) has only two elements that are not prime powers. By
Theorem 2.3, we have that Γ(A8) is AT-free, as desired. □

Given a finite group G, if any non-trivial element of G is of prime power order, then G is a CP-
group [13]. For example, for a prime p, any p-group is also a CP-group. Also, both the symmetric
group on four letters and the alternating group of degree five are CP-groups. Given two non-trivial
groups H and K, for which the direct product H × K is the coprime graph an AT-free graph? Next, we
will characterize the direct products H × K whose coprime graph is AT-free.

Proposition 2.8. Let H and K be two non-trivial groups. Then Γ(H × K) is AT-free if and only if one
of the following holds:

(a) π(H) = π(K) = {p, q}, where p, q are distinct primes;
(b) Both H and K are CP-groups with π(H) = {p, q}, π(K) = {r, s}, where p, q, r, s are pairwise

distinct primes;
(c) One of H and K is a p-group; without loss of generality, let π(H) = {p}. Also, π(K) ⊆ {p, q, r}

and qr < πe(K), where p, q, r are pairwise distinct primes.

Proof. If (a) occurs, then Corollary 2.4 (1) implies that Γ(H × K) is AT-free. If (b) occurs, then by
Theorem 2.3, it is easy to see that Γ(H×K) is AT-free. Now consider (c). If π(K) ⊆ {p, r} or {p, q}, then
Corollary 2.4 (1) also implies the desired result. Now suppose that qr < πe(K), and π(K) = {p, q, r}
or {q, r}. Then π(H × K) = {p, q, r}. If x ∈ H × K and o(x) is not a prime power, then π(⟨x⟩) = {p, q}
or {p, r}. Hence, by Corollary 2.4 (2), we have that Γ(H × K) is AT-free.

Conversely, suppose that Γ(H × K) is AT-free. We next consider two cases.
Case 1. Neither H nor K is a p-group for some prime p.
We next prove that one of (a) and (b) holds. Firstly, by Theorem 2.3 and the fact that K is not trivial,

it is easy to see that π(H) has at most 3 pairwise prime divisors. Assume now that π(H) ⊆ {p, q, r} for
pairwise distinct primes p, q, r. We next consider two subcases.

Subcase 1.1. π(H) = {p, q, r}.
Then π(K) ⊆ {p, q, r}; otherwise, the case in Observation 2.1 (2) occurs, and so Γ(H × K) is not

AT-free, a contradiction. It follows that there exist at least two distinct prime divisors in π(K). Without
loss of generality, suppose that {p, q} ⊆ π(K). Then it must be that pq, pr, qr ∈ πe(H × K). It follows
from Theorem 2.3 that Γ(H × K) is not AT-free, a contradiction.

Subcase 1.2. |π(H)| = 2, and without loss of generality, let π(H) = {p, q}.
Suppose that there exists one prime divisor in π(H) ∩ π(K), say p. If there exists r ∈ π(K) \ {p, q},

then pq, rp, rq ∈ πe(H × K), which is impossible as per Theorem 2.3. It follows that π(K) ⊆ {p, q}.
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Since K is not a p-group, we must have {p, q} = π(K), and so (a) occurs.
Suppose now that π(H) ∩ π(K) = ∅. By Theorem 2.3, we clearly have |π(K)| ≤ 2. As a result, we

can conclude that |π(K)| = 2 since K is not a primary group. Also, Theorem 2.3 implies that any of H
and K can not have elements whose order is the product of two distinct primes. Hence, both H and K
are CP-groups, and so (b) holds.

Case 2. One of H and K is a p-group; without loss of generality, let π(H) = {p}.
In this case, we prove that (c) holds. Clearly, π(K) \ {p} has no three pairwise distinct primes.

It follows that π(K) ⊆ {p, q, r}, where p, q, r are pairwise distinct primes. It suffices to show that
qr < πe(K). If qr ∈ πe(K), then {q, r} ⊆ π(K), and so pq, pr, qr ∈ πe(H × K), which is a contradiction
by Theorem 2.3. Thus, we obtain qr < πe(K), and so (c) holds. □

By Proposition 2.8, we have the following examples.

Example 2.9. The graph Γ(G) is not AT-free if G is isomorphic to one of the following:

S3 × A5,D6 × D10,A5 × D10,S4 × L3(2),S5 × L3(2),Z2 × S z(8).

Theorem 2.10. Let G be a sporadic simple group. Then Γ(G) is AT-free if and only if G is isomorphic
to one of the following Mathieu groups:

M11, M12, M22, M23.

Proof. It is well known that there are precisely 26 sporadic simple groups. We first consider Mathieu
groups. For M11, we have that πe(M11) = {1, 2, 3, 4, 5, 6, 8, 11}, and so it is clear that Γ(M11) is AT-free
by Theorem 2.3. For M12, one has πe(M12) = {1, 2, 3, 4, 5, 6, 8, 10, 11}, and so Γ(M12) is AT-free by
Theorem 2.3. For M22, we have πe(M22) = {1, 2, 3, 4, 5, 6, 7, 8, 11}, and similarly, Γ(M22) is AT-free.
For M23, we have πe(M23) = {1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 15, 23}, and similarly, Γ(M23) is AT-free. Note
that both M23 and M12 are subgroups of M24 by the ATLAS of finite groups [14]. Hence, we have that
6, 10, 15 ∈ πe(M24), and so Γ(M24) is not AT-free by Theorem 2.3.

By [14], it follows that Janko group J1, Janko group J2, Janko group J4, Held group He, Harada-
Norton group HN, Thompson group Th, Baby Monster group B, Monster group M, O’Nan group O′N,
Lyons group Ly, Rudvalis group Ru, Suzuki group S uz, Fischer group Fi22, and Higman-Sims group
HS contain D6 × D10, A5 × D10, M24, S4 × L3(2), A12, A9, S5 × L3(2), A12, J1, A11, Z2 × Z2 × S z(8),
S3 × A5, S10, and S8 as subgroups, respectively. By Example 2.9 and Proposition 2.7, we see that the
above simple groups do not have AT-free coprime graphs.

Now, note that {6, 10, 15} ∈ πe(Mcl) ∩ πe(J3), and so both Γ(Mcl) and Γ(J3) are not AT-free by
Theorem 2.3. Now every of Fi23 and Fi′24 contains Fi22 as a subgroup, which implies that the coprime
graphs of these two groups are not AT-free. Finally, note that the fact that for each 1 ≤ i ≤ 3, the
Conway group Coi has a subgroup isomorphic to McL [14]. As a consequence, Γ(Coi) is not AT-free
for each 1 ≤ i ≤ 3. □

3. Conclusions

The study of graphical representations of algebraic structures, especially groups, has been an
energizing and fascinating research area originating from the Cayley graphs. The coprime graph Γ(G)
of a finite G is a fairly recent development in the realm of graphs from groups. In this paper,
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“Forbidden subgraphs of co-prime graphs of finite groups”, the authors raised the following question:
what is a characterization for the finite groups whose coprime graphs are AT-free? For the above
question, in this paper we give a characterization of the finite groups whose coprime graphs are
AT-free. As applications, we also classify all finite groups G such that Γ(G) is AT-free if G is a
nilpotent group, a symmetric group, an alternating group, a direct product of two non-trivial groups,
or a sporadic simple group.
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