Let $ n $ be a positive integer with $ n > 1 $ and let $ a, b $ be fixed coprime positive integers with $ \min\{a, b\} > 2 $. In this paper, using the Baker method, we proved that, for any $ n $, if $ a > \max\{15064b, b^{3/2}\} $, then the equation $ (an)^x+(bn)^y = ((a+b)n)^z $ has no positive integer solutions $ (x, y, z) $ with $ x > z > y $. Further, let $ A, B $ be coprime positive integers with $ \min\{A, B\} > 1 $ and $ 2|B $. Combining the above conclusion with some existing results, we deduced that, for any $ n $, if $ (a, b) = (A^2, B^2), A > \max\{123B, B^{3/2}\} $ and $ B\equiv 2\pmod 4 $, then this equation has only the positive integer solution $ (x, y, z) = (1, 1, 1). $ Thus, we proved that the conjecture proposed by Yuan and Han is true for this case.
Citation: Yongzhong Hu. An application of the Baker method to a new conjecture on exponential Diophantine equations[J]. Electronic Research Archive, 2024, 32(3): 1618-1623. doi: 10.3934/era.2024073
Let $ n $ be a positive integer with $ n > 1 $ and let $ a, b $ be fixed coprime positive integers with $ \min\{a, b\} > 2 $. In this paper, using the Baker method, we proved that, for any $ n $, if $ a > \max\{15064b, b^{3/2}\} $, then the equation $ (an)^x+(bn)^y = ((a+b)n)^z $ has no positive integer solutions $ (x, y, z) $ with $ x > z > y $. Further, let $ A, B $ be coprime positive integers with $ \min\{A, B\} > 1 $ and $ 2|B $. Combining the above conclusion with some existing results, we deduced that, for any $ n $, if $ (a, b) = (A^2, B^2), A > \max\{123B, B^{3/2}\} $ and $ B\equiv 2\pmod 4 $, then this equation has only the positive integer solution $ (x, y, z) = (1, 1, 1). $ Thus, we proved that the conjecture proposed by Yuan and Han is true for this case.
[1] | P. Yuan, Q. Han, Jeśmanowicz' conjecture and related equations, Acta Arithmetica, 184 (2018), 37–49. https://doi.org/ 10.4064/aa170508-17-9 doi: 10.4064/aa170508-17-9 |
[2] | M. Le, R. Scott, R. Styer, A survey on the ternary purely exponential Diophantine equation $a^x+b^y = c^z$, Surv. Math. Appl., 14 (2019), 109–140. |
[3] | M. Le, G. Soydan, A note on the exponential Diophantine equation $(A^2n)^x+(B^2n)^y = ((A^2+B^2)n)^z$, Glas. Mat. 55 (2020), 195–201. https://doi.org/10.3336/gm.55.2.03 |
[4] | R. Scott, R. Styer, On $p^x-q^y = c$ and related three term exponential Diophantine equations with prime bases, J. Number Theory, 105 (2004), 212–234. https://doi.org/10.1016/j.jnt.2003.11.008 doi: 10.1016/j.jnt.2003.11.008 |
[5] | M. Laurent, Linear formes in two logarithmes and interpolation determinants II, Acta Arithmetica, 133 (2008), 325–348. https://doi.org/10.4064/aa133-4-3 doi: 10.4064/aa133-4-3 |
[6] | C. Sun, M. Tang, On the Diophantine equation $(an)^x+(bn)^y = (cn)^z$, Chin. Ann. Math., 39 (2018), 87–94. https://doi.org/10.16205/j.cnki.cama.2018.0009 doi: 10.16205/j.cnki.cama.2018.0009 |