For any $ R > 0 $, infinitely many nonradial singular solutions can be constructed for the following equation:
$ \begin{equation} -\Delta u = e^u \;\;\; \mbox{in}\; B_R \backslash \{0\} , \;\;\;\;\;\;(0.1)\end{equation} $
where $ B_R = \{x \in \mathbb{R}^N \; (N \geq 3): \; |x| < R\} $. To construct nonradial singular solutions, we need to consider asymptotic expansion at the isolated singular point $ x = 0 $ of a prescribed solution of (0.1). Then, nonradial singular solutions of (0.1) can be constructed by using the asymptotic expansion and introducing suitable weighted Hölder spaces.
Citation: Jingyue Cao, Yunkang Shao, Fangshu Wan, Jiaqi Wang, Yifei Zhu. Nonradial singular solutions for elliptic equations with exponential nonlinearity[J]. Electronic Research Archive, 2024, 32(5): 3171-3201. doi: 10.3934/era.2024146
For any $ R > 0 $, infinitely many nonradial singular solutions can be constructed for the following equation:
$ \begin{equation} -\Delta u = e^u \;\;\; \mbox{in}\; B_R \backslash \{0\} , \;\;\;\;\;\;(0.1)\end{equation} $
where $ B_R = \{x \in \mathbb{R}^N \; (N \geq 3): \; |x| < R\} $. To construct nonradial singular solutions, we need to consider asymptotic expansion at the isolated singular point $ x = 0 $ of a prescribed solution of (0.1). Then, nonradial singular solutions of (0.1) can be constructed by using the asymptotic expansion and introducing suitable weighted Hölder spaces.
[1] | W. X. Chen, C. M. Li, Classification of solutions for some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615–622. https://doi.org/10.1215/S0012-7094-91-06325-8 doi: 10.1215/S0012-7094-91-06325-8 |
[2] | J. Prajapat, G. Tarantello, On a class of elliptic problems in $ \mathbb{R}^2$: symmetry and uniqueness results, Proc. R. Soc. Edinburgh Sect. A: Math., 131 (2001), 967–985. https://doi.org/10.1017/S0308210500001219 doi: 10.1017/S0308210500001219 |
[3] | K. S. Chou, Y. H. Wan, Asymptotic radial symmetry for solutions of $\Delta u+e^u = 0$ in a punctured disc, Pacific J. Math., 163 (1994), 269–276. https://doi.org/10.2140/PJM.1994.163.269 doi: 10.2140/PJM.1994.163.269 |
[4] | Z. M. Guo, F. S. Wan, Y. Y. Yang, Asymptotic expansions for singular solutions of $\Delta u+e^u = 0$ in a punctured disc, Calc. Var. Partial Differ. Equations, 60 (2021), 35. https://doi.org/10.1007/s00526-021-01926-6 doi: 10.1007/s00526-021-01926-6 |
[5] | E. N. Dancer, A. Farina, On the classification of solutions of $-\Delta u = e^u$ on $ \mathbb{R}^N$: stability outside a compact set and applications, Proc. Am. Math. Soc., 137 (2009), 1333–1338. https://doi.org/10.1090/S0002-9939-08-09772-4 doi: 10.1090/S0002-9939-08-09772-4 |
[6] | A. Farina, Stable solutions of $-\Delta u = e^u$ on $ \mathbb{R}^N$, C. R. Math., 345 (2007), 63–66. https://doi.org/10.1016/j.crma.2007.05.021 doi: 10.1016/j.crma.2007.05.021 |
[7] | C. Wang, D. Ye, Some Liouville theorems for Hénon type elliptic equations, J. Funct. Anal., 262 (2012), 1705–1727. https://doi.org/10.1016/j.jfa.2011.11.017 doi: 10.1016/j.jfa.2011.11.017 |
[8] | M. F. B. Véron, L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), 489–-539. https://doi.org/10.1007/BF01243922 doi: 10.1007/BF01243922 |
[9] | S. Y. Chang, P. C. Yang, Prescribing Gaussian curvature on $S^2$, Acta Math., 159 (1987), 215–259. https://doi.org/10.1007/BF02392560 doi: 10.1007/BF02392560 |
[10] | E. Onofri, On the positivity of the effective action in a theory of random surfaces, Commun. Math. Phys., 86 (1982), 321–326. https://doi.org/10.1007/BF01212171 doi: 10.1007/BF01212171 |
[11] | D. Cassani, L. L. Du, Z. S. Liu, Positive solutions to the planar logarithmic Choquard equation with exponential nonlinearity, Nonlinear Anal., 241 (2024), 113479. https://doi.org/10.1016/j.na.2023.113479 doi: 10.1016/j.na.2023.113479 |
[12] | R. Filippucci, M. Ghergu, Singular solutions for coercive quasilinear elliptic inequalities with nonlocal terms, Nonlinear Anal., 197 (2020), 111857. https://doi.org/10.1016/j.na.2020.111857 doi: 10.1016/j.na.2020.111857 |
[13] | E. N. Dancer, Z. M. Guo, J. Wei, Non-radial singular solutions of the Lane-Emden equation in $ \mathbb{R}^N$, Indiana Univ. Math. J., 61 (2012), 1971–1996. https://www.jstor.org/stable/24904111 |
[14] | Z. M. Guo, J. C. Wei, Non-radial singular solutions of $\Delta u+e^u = 0$ in $\mathbb{R}^N \backslash \{0\}$, In press. |
[15] | Y. Miyamoto, Infinitely many nonradial singular solutions of $\Delta u+e^u = 0$ in $R^n \setminus \{0\}$, $4\leq n\leq10$, Proc. R. Soc. Edinburgh Sect. A: Math., 148 (2018), 133–147. https://doi.org/10.1017/S0308210517000051 doi: 10.1017/S0308210517000051 |
[16] | Z. M. Guo, X. Huang, F. Zhou, Radial symmetry of entire solutions of a bi-harmonic equation with exponential nonlinearity, J. Funct. Anal., 268 (2015), 1972–2004. https://doi.org/10.1016/j.jfa.2014.12.010 doi: 10.1016/j.jfa.2014.12.010 |
[17] | Z. M. Guo, J. Y. Li, F. S. Wan, Asymptotic behavior at the isolated singularities of solutions of some equations on singular manifolds with conical metrics, Commun. Partial Differ. Equations, 45 (2020), 1647–1681. https://doi.org/10.1080/03605302.2020.1784210 doi: 10.1080/03605302.2020.1784210 |
[18] | H. H. Zou, Symmetry of positive solutions of $\Delta u+u^p = 0$ in $ \mathbb{R}^n$, J. Differ. Equations 120 (1995), 46–88. https://doi.org/10.1006/jdeq.1995.1105 doi: 10.1006/jdeq.1995.1105 |
[19] | Q. Han, X. X. Li, Y. C. Li, Asymptotic expansions of solutions of the Yamabe equation and the $\sigma_k$-Yamabe equation near isolated singular points, Commun. Pure Appl. Math., 74 (2021), 1915–1970. https://doi.org/10.1002/cpa.21943 doi: 10.1002/cpa.21943 |
[20] | Q. Han, Y. C. Li, Singular solutions to the Yamabe equation with prescribed asymptotics, J. Differ. Equations, 274 (2021), 127–150. https://doi.org/10.1016/j.jde.2020.12.006 doi: 10.1016/j.jde.2020.12.006 |
[21] | R. Mazzeo, F. Pacard, Constant scalar curvature metrics with isolated singulatities, Duke Math. J., 99 (1999), 353–418. https://doi.org/10.1215/S0012-7094-99-09913-1 doi: 10.1215/S0012-7094-99-09913-1 |
[22] | Z. M. Guo, F. S. Wan, F. Zhou, Positive singular solutions of a nonlinear Maxwell equation arising in mesoscopic electromagnetism, J. Differ. Equations, 366 (2023), 249–291. https://doi.org/10.1016/j.jde.2023.03.056 doi: 10.1016/j.jde.2023.03.056 |