Based on the possible singularity of stationary state, we revisit the initial boundary value problem of the classical Klein-Gordon-Schrödinger (KGS) system in one space dimension. The wellposedness is established in a class of Sobolev NLS solutions together with exponentially growing KG solutions.
Citation: Qihong Shi, Yaqian Jia, Xunyang Wang. Global solution in a weak energy class for Klein-Gordon-Schrödinger system[J]. Electronic Research Archive, 2022, 30(2): 633-643. doi: 10.3934/era.2022033
Based on the possible singularity of stationary state, we revisit the initial boundary value problem of the classical Klein-Gordon-Schrödinger (KGS) system in one space dimension. The wellposedness is established in a class of Sobolev NLS solutions together with exponentially growing KG solutions.
[1] | H. Yukawa, On the interaction of elementary particles I, Proc. Phys. Math. Soc. Japan, 17 (1935), 48–57. https://doi.org/10.1143/PTPS.1.1 doi: 10.1143/PTPS.1.1 |
[2] | Q. Shi, C. Peng, Q. Wang, Blowup results for the fractional Schrödinger equation without gauge invariance, Discrete Contin. Dyn. Syst. B, (2021), In press, https://doi.org/10.3934/dcdsb.2021304 |
[3] | I. Fukuda, M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations I, Bull. Sci. Engrg. Res. Lab. Waseda Univ., 69 (1975), 51–62. |
[4] | I. Fukuda, M. Tsutsumi, On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions, Proc. Jpn. Acad., 51 (1975), 402–405. https://doi.org/10.3792/pja/1195518563 doi: 10.3792/pja/1195518563 |
[5] | I. Fukuda, M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations II, J. Math. Anal. Appl., 66 (1978), 358–378. https://doi.org/10.1016/0022-247X(78)90239-1 doi: 10.1016/0022-247X(78)90239-1 |
[6] | J. Baillon, J. Chadam, The Cauchy problem for the coupled Schrödinger-Klein-Gordon equations, Contemporary Developments in Continuum Mechanics and PDE (eds. Guilherme M. De La Penha and Luiz Adauto J. Medeiros), North-Holland Mathematics Studies, (1978), 37–44. https://doi.org/10.1016/S0304-0208(08)70857-0 |
[7] | H. Nakao, W. Wolf, On the global strong solutions of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Jpn., 39 (1987), 489–497. https://doi.org/10.2969/jmsj/03930489 doi: 10.2969/jmsj/03930489 |
[8] | B. Wang, Classical global solutions for non-linear Klein-Gordon-Schrödinger equations, Math. Method. Appl. Sci., 20 (1997), 599–616. https://doi.org/10.1002/(SICI)1099–1476(19970510)20:7<599::AID-MMA866>3.0.CO;2-7 doi: 10.1002/(SICI)1099–1476(19970510)20:7<599::AID-MMA866>3.0.CO;2-7 |
[9] | J. Colliander, J. Holmer, N. Tzirakis, Low regularity global Well-Posedness for the Zakharov and Klein-Gordon-Schrödinger system, T. Am. Math. Soc., 360 (2008), 4619–4638. https://doi.org/10.1090/S0002-9947-08-04295-5 doi: 10.1090/S0002-9947-08-04295-5 |
[10] | H. Pecher, Low regularity global well-posedness for the 3D Klein-Gordon-Schrödinger system, Commun. Pur. Appl. Anal., 11 (2012), 1081–1096. https://doi.org/10.3934/cpaa.2012.11.1081 doi: 10.3934/cpaa.2012.11.1081 |
[11] | W. Bao, X. Zhao, A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein CGordon CSchr odinger equations in the nonrelativistic limit regime, Numer. Math., 135 (2017), 833–873. https://doi.org/10.1007/s00211-016-0818-x doi: 10.1007/s00211-016-0818-x |
[12] | Q. Shi, S. Wang, Nonrelativistic approximation in the energy space for KGS system, J. Math. Anal. Appl., 462 (2018), 1242–1253. https://doi.org/10.1016/j.jmaa.2018.02.039 doi: 10.1016/j.jmaa.2018.02.039 |
[13] | J. Ginibre, G. Velo, The global cauchy problem for the non linear Schrödinger equation revisited, Ann. Inst. Henri Poincaré, Analyse non linéaire, 2 (1985), 309–327. https://doi.org/10.1016/S0294-1449(16)30399-7 doi: 10.1016/S0294-1449(16)30399-7 |
[14] | T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Phys. Théor., 46 (1987), 113–129. http://eudml.org/doc/76348 |
[15] | K. Yajima, Schrödinger evolution equations with magnetic fields, J. Anal. Math., 56 (1991), 29–76. https://doi.org/10.1007/BF02820459 doi: 10.1007/BF02820459 |
[16] | K. Yajima, Existence of solutions for Schrödinger evolution equations, Commun. Math. Phys., 110 (1987), 415–426. https://doi.org/10.1007/BF01212420 doi: 10.1007/BF01212420 |
[17] | M. Agueh, Gagliardo–Nirenberg inequalities involving the gradient $L^{2}$-norm, C. R. Acad. Sci. Paris, Ser., I, 346 (2008), 757–762. https://doi.org/10.1016/j.crma.2008.05.015 doi: 10.1016/j.crma.2008.05.015 |
[18] | K. Nakamitsu, M. Tsutsumi, The Cauchy problem for the coupled Maxwell-Schrödinger equations, J. Math. Phys., 27 (1986), 211–216. https://doi.org/10.1063/1.527363 doi: 10.1063/1.527363 |