Electronic
Research Archive

Research article

An application of the Baker method to a new conjecture on exponential Diophantine equations

Yongzhong Hu*

College of General Education, Guangdong University of Science and Technology, Dongguan 523083, China

* Correspondence: E-mail: huuyz@ aliyun.com.

Abstract

Let n be a positive integer with $n>1$ and let a, b be fixed coprime positive integers with $\min \{a, b\}>2$. In this paper, using the Baker method, we proved that, for any n, if $a>\max \left\{15064 b, b^{3 / 2}\right\}$, then the equation $(a n)^{x}+(b n)^{y}=((a+b) n)^{z}$ has no positive integer solutions (x, y, z) with $x>z>y$. Further, let A, B be coprime positive integers with $\min \{A, B\}>1$ and $2 \mid B$. Combining the above conclusion with some existing results, we deduced that, for any n, if $(a, b)=\left(A^{2}, B^{2}\right), A>\max \left\{123 B, B^{3 / 2}\right\}$ and $B \equiv 2(\bmod 4)$, then this equation has only the positive integer solution $(x, y, z)=(1,1,1)$. Thus, we proved that the conjecture proposed by Yuan and Han is true for this case.

Keywords: exponential Diophantine equation; application of Baker method; positive integer solution

1. Introduction

Let \mathbb{N} be the sets of all positive integers. Let n be a positive integer and let a, b be fixed coprime positive integers with $\min \{a, b\}>2$. Recently, Yuan and Han [1] proposed the following conjecture:

Conjecture 1.1. For any positive integer n, if $\min \{a, b\} \geq 4$, then the equation

$$
\begin{equation*}
(a n)^{x}+(b n)^{y}=((a+b) n)^{z}, x, y, z \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

has only the solution $(x, y, z)=(1,1,1)$.
The above conjecture has been proved in many cases for $n=1$ (see [2]). However, for general n, it is still widely open.

Let A, B be coprime positive integers with $\min \{A, B\}>1$ and $2 \mid B$. In [1], Yuan and Han [1] deal with the solutions (x, y, z) of (1.1) for the case that $(a, b)=\left(A^{2}, B^{2}\right)$, then (1.1) can be rewritten as

$$
\begin{equation*}
\left(A^{2} n\right)^{x}+\left(B^{2} n\right)^{y}=\left(\left(A^{2}+B^{2}\right) n\right)^{z}, x, y, z \in \mathbb{N} . \tag{1.2}
\end{equation*}
$$

In this respect, they proved that, for any n, if $B \equiv 2(\bmod 4)$, then (1.2) has no solutions (x, y, z) with $y>z>x$; in particular, if $(a, b)=\left(A^{2}, B^{2}\right)$ and $B=2$, then Conjecture 1.1 is true. Very recently, Le and Soydan [3] proved that, for any n, if $A>B^{3} / 8$, then (1.2) has no solutions (x, y, z) with $x>z>y$. Thus, they deduce that, for any n, if $(a, b)=\left(A^{2}, B^{2}\right), A>B^{3} / 8$ and $B \equiv 2(\bmod 4)$, then Conjecture 1.1 is true. Their proof relies heavily on an upper bound for solutions of exponential Diophantine equations due to Scott and Styer [4].

In this paper, using the Baker method, we prove a general result as follows:
Theorem 1.2. For any $n>1$, if $a>\max \left\{15064 b, b^{3 / 2}\right\}$, then (1.1) has no solutions (x, y, z) with $x>z>y$.

Combining Theorem 1.2 with the above mentioned results of [1], we can obtain the following corollary:

Corollary 1.3. For any $n>1$, if $(a, b)=\left(A^{2}, B^{2}\right), A>\max \left\{123 B, B^{3 / 2}\right\}$ and $B \equiv 2(\bmod 4)$, then Conjecture 1.1 is true.

Obviously, Theorem 1.2 and Corollary 1.3 improve the corresponding results in [3].

2. Lemmas

Let $\mathbb{Z}, \mathbb{Q}, \mathbb{C}$ be the sets of all integers, rational numbers, and complex numbers, respectively. For any algebraic number α of degree d over \mathbb{Q}, let $h(\alpha)$ denote the absolute logarithmic height of α, then we have

$$
\begin{equation*}
h(\alpha)=\frac{1}{d}\left(\log \left|a_{0}\right|+\sum_{i=1}^{d} \log \max \left\{1,\left|\alpha^{(i)}\right|\right\}\right), \tag{2.1}
\end{equation*}
$$

where a_{0} is the leading coefficient of the minimal polynomial of α over \mathbb{Z} and $\alpha^{(i)}(i=1, \ldots, d)$ are the conjugates of α in \mathbb{C}. For $\alpha \neq 0$, let $\log \alpha$ be any determination of its logarithms.

Let α_{1}, α_{2} be two algebraic numbers with $\min \left\{\left|\alpha_{1}\right|,\left|\alpha_{2}\right|\right\}>1$ and let β_{1}, β_{2} be positive integers. Further, let

$$
\begin{equation*}
\Lambda=\beta_{1} \log \alpha_{1}-\beta_{2} \log \alpha_{2} \tag{2.2}
\end{equation*}
$$

Lemma 2.1. If α_{1} and α_{2} are multiplicatively independent and $\alpha_{1}, \alpha_{2}, \log \alpha_{1}, \log \alpha_{2}$ are real and positive, then

$$
\log |\Lambda| \geq-25.2 D^{4}\left(\log A_{1}\right)\left(\log A_{2}\right)\left(\max \left\{1, \frac{10}{D}, 0.38+\log K\right\}\right)^{2},
$$

where $D=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right]$,

$$
\begin{gathered}
\log A_{j} \geq \max \left\{\frac{1}{D}, \frac{\left|\log \alpha_{1}\right|}{D}, h\left(\alpha_{j}\right)\right\}, j=1,2, \\
K=\frac{\beta_{1}}{D \log A_{2}}+\frac{\beta_{2}}{D \log A_{1}} .
\end{gathered}
$$

Proof. This is the special case of Corollary 2 of [5] for $m=10$.
Lemma 2.2. (Theorem 1.1 of [6], Proposition 3.1 of [1]) Let (x, y, z) be a solution of (1.1) with $(x, y, z) \neq(1,1,1)$, then either $x>z>y$ or $y>z>x$. Moreover, if $n>1$, then either

$$
x>z>y, \operatorname{rad}(n) \mid b, b=b_{1} b_{2}, b_{1}^{y}=n^{z-y}, b_{1}, b_{2} \in \mathbb{N}, b_{1}>1, \operatorname{gcd}\left(b_{1}, b_{2}\right)=1
$$

or

$$
y>z>x, \operatorname{rad}(n) \mid a, a=a_{1} a_{2}, a_{1}^{x}=n^{z-x}, a_{1}, a_{2} \in \mathbb{N}, a_{1}>1, \operatorname{gcd}\left(a_{1}, a_{2}\right)=1,
$$

where $\operatorname{rad}(n)$ is the product of all distinct prime divisors of n.
Lemma 2.3. Let t be a real number. If $t>7600$, then $t>75.6(1.08+\log t)^{2}$.
Proof. Let $f(t)=t-75.6(1.08+\log t)^{2}$ for $t>1$, then we have $f^{\prime}(t)=1-151.2(1.08+\log t) / t$, where $f^{\prime}(t)$ is the derivative of $f(t)$. Since $f^{\prime}(t)>0$ for $t>1500, f(t)$ is an increasing function for $t>1500$. Therefore, since $f(7600)>0$, we get $f(t)>0$ for $t>7600$. Thus, the lemma is proved.

3. Proofs

Proof of Theorem 1.2. We now prove the first half of the theorem. Let $a>\max \left\{15064 b, b^{3 / 2}\right\}$ and (x, y, z) be a solution of (1.1) with $x>z>y$. By Lemma 2.2, we have

$$
\begin{equation*}
b=b_{1} b_{2}, b_{1}^{y}=n^{z-y}, b_{1}, b_{2} \in \mathbb{N}, \operatorname{gcd}\left(b_{1}, b_{2}\right)=1 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{x} n^{x-z}+b_{2}^{y}=(a+b)^{z} . \tag{3.2}
\end{equation*}
$$

By (3.2), we get

$$
\begin{equation*}
z \log (a+b)=x \log a+(x-z) \log n+\Lambda, \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
0<\Lambda=\log \left(1+\frac{b_{2}^{y}}{a^{x} n^{x-z}}\right) . \tag{3.4}
\end{equation*}
$$

Further, by (3.3), we have

$$
\begin{equation*}
0<\Lambda=z \log \left(\frac{a+b}{a}\right)-(x-z) \log (a n) \tag{3.5}
\end{equation*}
$$

Notice that $x>z>y, a>b$, and $b \geq b_{2}$ by (3.1). We get $a^{x} n^{x-z} \geq a^{x}>a^{y}>b^{y} \geq b_{2}^{y}$. Hence, we see from (3.2) that

$$
\begin{equation*}
2 a^{x} n^{x-z}>(a+b)^{z} . \tag{3.6}
\end{equation*}
$$

Since $\log (1+t)<t$ for any $t>0$, by (3.4) and (3.6), we have

$$
\begin{equation*}
\Lambda<\frac{b_{2}^{y}}{a^{x} n^{x-z}}<\frac{2 b_{2}^{y}}{(a+b)^{z}} . \tag{3.7}
\end{equation*}
$$

Therefore, by (3.7), we get

$$
\begin{equation*}
\log \left(2 b_{2}^{y}\right)>\log |\Lambda|+z \log (a+b) . \tag{3.8}
\end{equation*}
$$

Let

$$
\begin{equation*}
\alpha_{1}=\frac{a+b}{a}, \alpha_{2}=a n, \beta_{1}=z, \beta_{2}=x-z . \tag{3.9}
\end{equation*}
$$

By (3.5) and (3.9), Λ can be rewritten as (2.2). We see from (3.9) that α_{1} and α_{2} are multiplicatively independent rational numbers with $\min \left\{\alpha_{1}, \alpha_{2}\right\}>1$. By (2.1) and (3.9), we have

$$
\begin{gather*}
{\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right]=1,} \tag{3.10}\\
h\left(\alpha_{1}\right)=\log (a+b), h\left(\alpha_{2}\right)=\log (a n) . \tag{3.11}
\end{gather*}
$$

Since $\Lambda>0$ by (3.5), applying Lemma 2.1, we get from (3.5), (3.9), (3.10), and (3.11) that

$$
\begin{equation*}
\log |\Lambda| \geq-25.2(\log (a+b))(\log (a n))(\max \{10,0.38+\log K\})^{2} \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\frac{z}{\log (a n)}+\frac{x-z}{\log (a+b)} \tag{3.13}
\end{equation*}
$$

Therefore, by (3.8) and (3.12), we have

$$
\log \left(2 b_{2}^{y}\right)+25.2(\log (a+b))(\log (a n))(\max \{10,0.38+\log K\})^{2}>z \log (a+b)
$$

Hence, we obtain

$$
\begin{equation*}
\frac{\log \left(2 b_{2}^{y}\right)}{(\log (a+b))(\log (a n))}+25.2(\max \{10,0.38+\log K\})^{2}>\frac{z}{\log (a n)} . \tag{3.14}
\end{equation*}
$$

Since $z>y$ and $a>b^{3 / 2}$, if $2 b_{2}^{y}>(a+b)^{2 z / 3}$, then from (3.1) we get $a^{2 / 3}>b$ and

$$
2 a^{2 y / 3}>2 b^{y} \geq 2 b_{2}^{y} \geq(a+b)^{2 z / 3}>a^{2 z / 3} \geq a^{2(y+1) / 3}>2 a^{2 y / 3}
$$

which is a contradiction. So, we have $2 b_{2}^{y}<(a+b)^{2 z / 3}$, which implies that

$$
\begin{equation*}
\frac{\log \left(2 b_{2}^{y}\right)}{(\log (a+b))(\log (a n))}<\frac{2 z}{3 \log (a n)} . \tag{3.15}
\end{equation*}
$$

Hence, by (3.14) and (3.15), we get

$$
\begin{equation*}
25.2(\max \{10,0.38+\log K\})^{2}>\frac{z}{3 \log (a n)} \tag{3.16}
\end{equation*}
$$

When $10 \geq 0.38+\log K$ by (3.13), we have

$$
\begin{equation*}
\frac{z}{\log (a n)}<K \leq e^{9.62}<15064 . \tag{3.17}
\end{equation*}
$$

When $10<0.38+\log K$ by (3.16), we get

$$
\begin{equation*}
75.6(0.38+\log K)^{2}>\frac{z}{\log (a n)} \tag{3.18}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{z}{\log (a n)}>\frac{x-z}{\log ((a+b) / a)}>\frac{x-z}{\log (a+b)} \tag{3.19}
\end{equation*}
$$

by (3.5), we see from (3.13) and (3.19) that

$$
\begin{equation*}
K<\frac{2 z}{\log (a n)} \tag{3.20}
\end{equation*}
$$

Further, by (3.18) and (3.20), we have

$$
\begin{gather*}
75.6\left(1.08+\log \left(\frac{z}{\log (a n)}\right)\right)^{2} \\
>75.6\left(0.38+\log \left(\frac{2 z}{\log (a n)}\right)\right)^{2}>\frac{z}{\log (a n)} . \tag{3.21}
\end{gather*}
$$

Applying Lemma 2.3 to (3.21), we get

$$
\begin{equation*}
\frac{z}{\log (a n)}<7600 \tag{3.22}
\end{equation*}
$$

The combination of (3.17) and (3.22) yields

$$
\begin{equation*}
\frac{z}{\log (a n)}<15064 \tag{3.23}
\end{equation*}
$$

On the other hand, by (3.5), we have

$$
\log (a n) \leq(x-z) \log (a n)<z \log \left(\frac{a+b}{a}\right)<\frac{z b}{a}
$$

Therefore, we get

$$
\begin{equation*}
\frac{a}{b}<\frac{z}{\log (a n)} \tag{3.24}
\end{equation*}
$$

Hence, by (3.23) and (3.24), we obtain

$$
\begin{equation*}
\frac{a}{b}<15064 \tag{3.25}
\end{equation*}
$$

However, since $a>15064 b$, (3.25) is false. Thus, the theorem is proved.
Proof of Corollary 1.3. Let $(a, b)=\left(A^{2}, B^{2}\right)$. By Theorem 1.2, if $A>\max \left\{123 B, B^{3 / 2}\right\}$, then (1.2) has no solutions (x, y, z) with $x>z>y$. On the other hand, by [1], if $B \equiv 2(\bmod 4)$, then (1.2) has no solutions (x, y, z) with $y>z>x$. Therefore, by Lemma 2.2, if $A>\max \left\{123 B, B^{3 / 2}\right\}$ and $B \equiv 2$ $(\bmod 4)$, then (1.2) has no solutions (x, y, z) with $(x, y, z) \neq(1,1,1)$. Thus, the corollary is proved.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The author declares there is no conflict of interest.

References

1. P. Yuan, Q. Han, Jeśmanowicz' conjecture and related equations, Acta Arithmetica, 184 (2018), 37-49. https://doi.org/ 10.4064/aa170508-17-9
2. M. Le, R. Scott, R. Styer, A survey on the ternary purely exponential Diophantine equation $a^{x}+b^{y}=c^{z}$, Surv. Math. Appl., 14 (2019), 109-140.
3. M. Le, G. Soydan, A note on the exponential Diophantine equation $\left(A^{2} n\right)^{x}+\left(B^{2} n\right)^{y}=\left(\left(A^{2}+B^{2}\right) n\right)^{z}$, Glas. Mat. 55 (2020), 195-201. https://doi.org/10.3336/gm.55.2.03
4. R. Scott, R. Styer, On $p^{x}-q^{y}=c$ and related three term exponential Diophantine equations with prime bases, J. Number Theory, 105 (2004), 212-234. https://doi.org/10.1016/j.jnt.2003.11.008
5. M. Laurent, Linear formes in two logarithmes and interpolation determinants II, Acta Arithmetica, 133 (2008), 325-348. https://doi.org/10.4064/aa133-4-3
6. C. Sun, M. Tang, On the Diophantine equation $(a n)^{x}+(b n)^{y}=(c n)^{z}$, Chin. Ann. Math., 39 (2018), 87-94. https://doi.org/10.16205/j.cnki.cama.2018.0009
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
