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Abstract: Let n be a positive integer with n > 1 and let a, b be fixed coprime positive inte-
gers with min{a, b} > 2. In this paper, using the Baker method, we proved that, for any n, if
a > max{15064b, b3/2}, then the equation (an)x + (bn)y = ((a + b)n)z has no positive integer solu-
tions (x, y, z) with x > z > y. Further, let A, B be coprime positive integers with min{A, B} > 1
and 2|B. Combining the above conclusion with some existing results, we deduced that, for any n, if
(a, b) = (A2, B2), A > max{123B, B3/2} and B ≡ 2 (mod 4), then this equation has only the positive
integer solution (x, y, z) = (1, 1, 1). Thus, we proved that the conjecture proposed by Yuan and Han is
true for this case.
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1. Introduction

Let N be the sets of all positive integers. Let n be a positive integer and let a, b be fixed coprime
positive integers with min{a, b} > 2. Recently, Yuan and Han [1] proposed the following conjecture:

Conjecture 1.1. For any positive integer n, if min{a, b} ≥ 4, then the equation

(an)x + (bn)y = ((a + b)n)z, x, y, z ∈ N (1.1)

has only the solution (x, y, z) = (1, 1, 1).

The above conjecture has been proved in many cases for n = 1 (see [2]). However, for general n, it
is still widely open.

Let A, B be coprime positive integers with min{A, B} > 1 and 2|B. In [1], Yuan and Han [1] deal
with the solutions (x, y, z) of (1.1) for the case that (a, b) = (A2, B2), then (1.1) can be rewritten as
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(A2n)x + (B2n)y = ((A2 + B2)n)z, x, y, z ∈ N. (1.2)

In this respect, they proved that, for any n, if B ≡ 2 (mod 4), then (1.2) has no solutions (x, y, z) with
y > z > x; in particular, if (a, b) = (A2, B2) and B = 2, then Conjecture 1.1 is true. Very recently, Le and
Soydan [3] proved that, for any n, if A > B3/8, then (1.2) has no solutions (x, y, z) with x > z > y. Thus,
they deduce that, for any n, if (a, b) = (A2, B2), A > B3/8 and B ≡ 2 (mod 4), then Conjecture 1.1 is
true. Their proof relies heavily on an upper bound for solutions of exponential Diophantine equations
due to Scott and Styer [4].

In this paper, using the Baker method, we prove a general result as follows:

Theorem 1.2. For any n > 1, if a > max{15064b, b3/2}, then (1.1) has no solutions (x, y, z) with
x > z > y.

Combining Theorem 1.2 with the above mentioned results of [1], we can obtain the following
corollary:

Corollary 1.3. For any n > 1, if (a, b) = (A2, B2), A > max{123B, B3/2} and B ≡ 2 (mod 4), then
Conjecture 1.1 is true.

Obviously, Theorem 1.2 and Corollary 1.3 improve the corresponding results in [3].

2. Lemmas

Let Z,Q,C be the sets of all integers, rational numbers, and complex numbers, respectively. For
any algebraic number α of degree d over Q, let h(α) denote the absolute logarithmic height of α, then
we have

h(α) =
1
d

(log |a0| +

d∑
i=1

log max
{
1, |α(i)|

}
), (2.1)

where a0 is the leading coefficient of the minimal polynomial of α over Z and α(i)(i = 1, . . . , d) are the
conjugates of α in C. For α , 0, let logα be any determination of its logarithms.

Let α1, α2 be two algebraic numbers with min{|α1|, |α2|} > 1 and let β1, β2 be positive integers.
Further, let

Λ = β1 logα1 − β2 logα2. (2.2)

Lemma 2.1. If α1 and α2 are multiplicatively independent and α1, α2, logα1, logα2 are real and posi-
tive, then

log |Λ| ≥ −25.2D4(log A1)(log A2)
(
max

{
1,

10
D
, 0.38 + log K

})2

,

where D = [Q(α1, α2) : Q],

log A j ≥ max
{

1
D
,
| logα1|

D
, h(α j)

}
, j = 1, 2,

K =
β1

D log A2
+

β2

D log A1
.
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Proof. This is the special case of Corollary 2 of [5] for m = 10. □

Lemma 2.2. (Theorem 1.1 of [6], Proposition 3.1 of [1]) Let (x, y, z) be a solution of (1.1) with
(x, y, z) , (1, 1, 1), then either x > z > y or y > z > x. Moreover, if n > 1, then either

x > z > y, rad(n)|b, b = b1b2, b
y
1 = nz−y, b1, b2 ∈ N, b1 > 1, gcd(b1, b2) = 1

or
y > z > x, rad(n)|a, a = a1a2, ax

1 = nz−x, a1, a2 ∈ N, a1 > 1, gcd(a1, a2) = 1,

where rad(n) is the product of all distinct prime divisors of n.

Lemma 2.3. Let t be a real number. If t > 7600, then t > 75.6(1.08 + log t)2.

Proof. Let f (t) = t − 75.6(1.08 + log t)2 for t > 1, then we have f ′(t) = 1 − 151.2(1.08 + log t)/t,
where f ′(t) is the derivative of f (t). Since f ′(t) > 0 for t > 1500, f (t) is an increasing function for
t > 1500. Therefore, since f (7600) > 0, we get f (t) > 0 for t > 7600. Thus,the lemma is proved. □

3. Proofs

Proof of Theorem 1.2. We now prove the first half of the theorem. Let a > max{15064b, b3/2} and
(x, y, z) be a solution of (1.1) with x > z > y. By Lemma 2.2, we have

b = b1b2, b
y
1 = nz−y, b1, b2 ∈ N, gcd(b1, b2) = 1 (3.1)

and
axnx−z + by

2 = (a + b)z. (3.2)

By (3.2), we get

z log(a + b) = x log a + (x − z) log n + Λ, (3.3)

where

0 < Λ = log
(
1 +

by
2

axnx−z

)
. (3.4)

Further, by (3.3), we have

0 < Λ = z log
(
a + b

a

)
− (x − z) log(an). (3.5)

Notice that x > z > y, a > b, and b ≥ b2 by (3.1). We get axnx−z ≥ ax > ay > by ≥ by
2. Hence, we see

from (3.2) that
2axnx−z > (a + b)z. (3.6)

Since log(1 + t) < t for any t > 0, by (3.4) and (3.6), we have

Λ <
by

2

axnx−z <
2by

2

(a + b)z . (3.7)

Therefore, by (3.7), we get
log(2by

2) > log |Λ| + z log(a + b). (3.8)
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Let
α1 =

a + b
a
, α2 = an, β1 = z, β2 = x − z. (3.9)

By (3.5) and (3.9), Λ can be rewritten as (2.2). We see from (3.9) that α1 and α2 are multiplicatively
independent rational numbers with min{α1, α2} > 1. By (2.1) and (3.9), we have

[Q(α1, α2) : Q] = 1, (3.10)

h(α1) = log(a + b), h(α2) = log(an). (3.11)

Since Λ > 0 by (3.5), applying Lemma 2.1, we get from (3.5), (3.9), (3.10), and (3.11) that

log |Λ| ≥ −25.2(log(a + b))(log(an))(max{10, 0.38 + log K})2, (3.12)

where
K =

z
log(an)

+
x − z

log(a + b)
. (3.13)

Therefore, by (3.8) and (3.12), we have

log(2by
2) + 25.2(log(a + b))(log(an))(max{10, 0.38 + log K})2 > z log(a + b).

Hence, we obtain

log(2by
2)

(log(a + b))(log(an))
+ 25.2(max{10, 0.38 + log K})2 >

z
log(an)

. (3.14)

Since z > y and a > b3/2, if 2by
2 > (a + b)2z/3, then from (3.1) we get a2/3 > b and

2a2y/3 > 2by ≥ 2by
2 ≥ (a + b)2z/3 > a2z/3 ≥ a2(y+1)/3 > 2a2y/3,

which is a contradiction. So, we have 2by
2 < (a + b)2z/3, which implies that

log(2by
2)

(log(a + b))(log(an))
<

2z
3 log(an)

. (3.15)

Hence, by (3.14) and (3.15), we get

25.2(max{10, 0.38 + log K})2 >
z

3 log(an)
. (3.16)

When 10 ≥ 0.38 + log K by (3.13), we have

z
log(an)

< K ≤ e9.62 < 15064. (3.17)

When 10 < 0.38 + log K by (3.16), we get

75.6(0.38 + log K)2 >
z

log(an)
. (3.18)
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Since
z

log(an)
>

x − z
log((a + b)/a)

>
x − z

log(a + b)
(3.19)

by (3.5), we see from (3.13) and (3.19) that

K <
2z

log(an)
. (3.20)

Further, by (3.18) and (3.20), we have

75.6
(
1.08 + log

(
z

log(an)

))2

> 75.6
(
0.38 + log

(
2z

log(an)

))2

>
z

log(an)
. (3.21)

Applying Lemma 2.3 to (3.21), we get

z
log(an)

< 7600. (3.22)

The combination of (3.17) and (3.22) yields

z
log(an)

< 15064. (3.23)

On the other hand, by (3.5), we have

log(an) ≤ (x − z) log(an) < z log
(
a + b

a

)
<

zb
a
.

Therefore, we get
a
b
<

z
log(an)

. (3.24)

Hence, by (3.23) and (3.24), we obtain

a
b
< 15064. (3.25)

However, since a > 15064b, (3.25) is false. Thus, the theorem is proved. □

Proof of Corollary 1.3. Let (a, b) = (A2, B2). By Theorem 1.2, if A > max{123B, B3/2}, then (1.2)
has no solutions (x, y, z) with x > z > y. On the other hand, by [1], if B ≡ 2 (mod 4), then (1.2) has
no solutions (x, y, z) with y > z > x. Therefore, by Lemma 2.2, if A > max{123B, B3/2} and B ≡ 2
(mod 4), then (1.2) has no solutions (x, y, z) with (x, y, z) , (1, 1, 1). Thus, the corollary is proved. □
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