In this work, an energy-preserving scheme is proposed for the nonlinear Dirac equation by combining the exponential time differencing method with the scalar auxiliary variable (SAV) approach. First, the original equations can be transformed into the equivalent systems by utilizing the SAV technique. Then the exponential time integrator method is applied for discretizing the temporal derivative, and the standard central difference scheme is used for approximating the spatial derivative for the equivalent one. Finally, the reformulated systems, the semi-discrete spatial scheme, and the fully-discrete, linearly implicit exponential scheme are proven to be energy conserving. The numerical experiments confirm the theoretical results.
Citation: Hongquan Wang, Yancai Liu, Xiujun Cheng. An energy-preserving exponential scheme with scalar auxiliary variable approach for the nonlinear Dirac equations[J]. Electronic Research Archive, 2025, 33(1): 263-276. doi: 10.3934/era.2025014
In this work, an energy-preserving scheme is proposed for the nonlinear Dirac equation by combining the exponential time differencing method with the scalar auxiliary variable (SAV) approach. First, the original equations can be transformed into the equivalent systems by utilizing the SAV technique. Then the exponential time integrator method is applied for discretizing the temporal derivative, and the standard central difference scheme is used for approximating the spatial derivative for the equivalent one. Finally, the reformulated systems, the semi-discrete spatial scheme, and the fully-discrete, linearly implicit exponential scheme are proven to be energy conserving. The numerical experiments confirm the theoretical results.
[1] | J. Zhang, Y. Zhang, An infinite sequence of localized semiclassical states for nonlinear Maxwell-Dirac system, J. Geom. Anal., 34 (2024), 277. https://doi.org/10.1007/s12220-024-01724-4 doi: 10.1007/s12220-024-01724-4 |
[2] | N. S. Papageorgiou, J. Zhang, W. Zhang, Global existence and multiplicity of solutions for nonlinear singular eigenvalue problems, Discrete Contin. Dyn. Syst.-S, (2024), 1–17. https://doi.org/10.3934/dcdss.2024018 doi: 10.3934/dcdss.2024018 |
[3] | J. Y. Li, T. C. Wang, Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation, Appl. Numer. Math., 162 (2021), 150–170. https://doi.org/10.1016/j.apnum.2020.12.010 doi: 10.1016/j.apnum.2020.12.010 |
[4] | Y. Feng, Z. G. Xu, J. Yin, Uniform error bounds of exponential wave integrator methods for the long-time dynamics of the Dirac equation with small potentials, Appl. Numer. Math., 172 (2022), 50–66. https://doi.org/10.1016/j.apnum.2021.09.018 doi: 10.1016/j.apnum.2021.09.018 |
[5] | W. Z. Bao, Y. Y. Cai, X. W. Jia, Q. L. Tang, Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime, J. Sci. Comput., 71 (2017), 1094–1134. https://doi.org/10.1007/s10915-016-0333-3 doi: 10.1007/s10915-016-0333-3 |
[6] | M. Lemou, F. Méhats, X. F. Zhao, Uniformly accurate numerical schemes for the nonlinear Dirac equation in the nonrelativistic limit regime, Commun. Math. Sci., 15 (2017), 1107–1128. https://doi.org/10.4310/CMS.2017.v15.n4.a10 doi: 10.4310/CMS.2017.v15.n4.a10 |
[7] | K. Schratz, Y. Wang, X. F. Zhao, Low-regularity integrators for nonlinear Dirac equations, Math.Comput., 90 (2021), 189–214. https://doi.org/10.1090/mcom/3557 doi: 10.1090/mcom/3557 |
[8] | Y. Zhe, J. Shen, Efficient SAV-Hermite methods for the nonlinear Dirac equation, Discrete Contin. Dyn. Syst.-Ser. B, 28 (2023), 3428–3452. https://doi.org/10.3934/dcdsb.2022225 doi: 10.3934/dcdsb.2022225 |
[9] | R. Yang, Y. Xing, Energy conserving discontinuous Galerkin method with scalar auxiliary variable technique for the nonlinear Dirac equation, J. Comput. Phys., 463 (2022), 111278. https://doi.org/10.1016/j.jcp.2022.111278 doi: 10.1016/j.jcp.2022.111278 |
[10] | F. Fillion-Gourdeau, E. Lorin, A. D. Bandrauk, Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling, Comput. Phys. Commun., 183 (2012), 1403–1415. https://doi.org/10.1016/j.cpc.2012.02.012 doi: 10.1016/j.cpc.2012.02.012 |
[11] | X. H. Yang, W. L. Qiu, H. X. Zhang, L. Tang, An efficient alternating direction implicit finite difference scheme for the three-dimensional time-fractional telegraph equation, Comput. Math. Appl., 102 (2021), 233–247. https://doi.org/10.1016/j.camwa.2021.10.021 doi: 10.1016/j.camwa.2021.10.021 |
[12] | Z. Y. Chen, H. X. Zhang, H. Chen, ADI compact difference scheme for the two-dimensional integro-differential equation with two fractional Riemann-Liouville integral kernels, Fractal Fractional, 8 (2024), 707. https://doi.org/10.3390/fractalfract8120707 doi: 10.3390/fractalfract8120707 |
[13] | H. X. Zhang, X. H. Yang, Y. L. Liu, Y. Liu, An extrapolated CN-WSGD OSC method for a nonlinear time fractional reaction-diffusion equation, Appl. Numer. Math., 157 (2020), 619–633. https://doi.org/10.1016/j.apnum.2020.07.017 doi: 10.1016/j.apnum.2020.07.017 |
[14] | X. H. Yang, Z. M. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7 |
[15] | X. H. Yang, H. X. Zhang, Q. Zhang, G. W. Yuan, Simple positivity preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear Dyn., 108 (2022), 3859–3886. https://doi.org/10.1007/s11071-022-07399-2 doi: 10.1007/s11071-022-07399-2 |
[16] | C. J. Li, H. X. Zhang, X. H. Yang, A new linearized ADI compact difference method on graded meshes for a nonlinear 2D and 3D PIDE with a WSK, Comput. Math. Appl., 176 (2024), 349–370. https://doi.org/10.1016/j.camwa.2024.11.006 doi: 10.1016/j.camwa.2024.11.006 |
[17] | Y. Shi, X. H. Yang, Z. M. Zhang, Construction of a new time-space two-grid method and its solution for the generalized Burgers' equation, Appl. Math. Lett., 158 (2024), 109244. https://doi.org/10.1016/j.aml.2024.109244 doi: 10.1016/j.aml.2024.109244 |
[18] | X. H. Yang, W. Wang, Z. Y. Zhou, H. X. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwan. J. Math., 1 (2024), 1–32. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906 |
[19] | X. H. Yang, W. L. Qiu, H. F. Chen, H. X. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math., 172 (2022), 497–513. https://doi.org/10.1016/j.apnum.2021.11.004 doi: 10.1016/j.apnum.2021.11.004 |
[20] | X. H. Yang, Z. M. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z |
[21] | H. X. Zhang, X. H. Yang, D. Xu, Unconditional convergence of linearized orthogonal spline collocation algorithm for semilinear subdiffusion equation with nonsmooth solution, Numer. Methods Partial Differ. Equations, 37 (2021), 1361–1373. https://doi.org/10.1002/num.22583 doi: 10.1002/num.22583 |
[22] | X. H. Yang, H. X. Zhang, The uniform $l^1$ long-time behavior of time discretization for time-fractional partial differential equations with nonsmooth data, Appl. Math. Lett., 124 (2022), 107644. https://doi.org/10.1016/j.aml.2021.107644 doi: 10.1016/j.aml.2021.107644 |
[23] | D. F. Li, X. X. Li, Relaxation exponential Rosenbrock-type methods for oscillatory Hamiltonian systems, SIAM J. Sci. Comput., 45 (2023), A2886–A2911. https://doi.org/10.1137/22M1511345 doi: 10.1137/22M1511345 |
[24] | D. F. Li, X. X. Li, J. Yang, Relaxation exponential Runge-Kutta methods and their applications to semilinear dissipative/conservative systems, Commun. Comput. Phys., 36 (2024), 908–942. https://doi.org/10.4208/cicp.OA-2023-0241 doi: 10.4208/cicp.OA-2023-0241 |
[25] | D. F. Li, W. W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations, J. Sci. Comput., 83 (2020), 1–17. https://doi.org/10.1007/s10915-020-01245-6 doi: 10.1007/s10915-020-01245-6 |
[26] | G. Akrivis, B. Y. Li, D. F. Li, Energy-decaying extrapolated RK–SAV methods for the Allen–Cahn and Cahn–Hilliard equations, SIAM J. Sci. Comput., 41 (2019), A3703–A3727. https://doi.org/10.1137/19M1264412 doi: 10.1137/19M1264412 |
[27] | Y. R. Zhang, J. Shen, A generalized SAV approach with relaxation for dissipative systems, J. Comput. Phys., 464 (2022), 111311. https://doi.org/10.1016/j.jcp.2022.111311 doi: 10.1016/j.jcp.2022.111311 |
[28] | J. Xu, S. H. Shao, H. Z. Tang, Numerical methods for nonlinear Dirac equation, J. Comput. Phys., 245 (2013), 131–149. https://doi.org/10.1016/j.jcp.2013.03.031 doi: 10.1016/j.jcp.2013.03.031 |
[29] | Y. Y. Fu, D. D. Hu, G. G. Zhang, Arbitrary high-order exponential integrators conservative schemes for the nonlinear Gross-Pitaevskii equation, Comput. Math. Appl., 121 (2022), 102–114. https://doi.org/10.1016/j.camwa.2022.07.004 doi: 10.1016/j.camwa.2022.07.004 |
[30] | S. C. Li, X. G. Li, High-order compact methods for the nonlinear Dirac equation, Comput. Appl. Math., 37 (2018), 6483–6498. https://doi.org/10.1007/s40314-018-0705-4 doi: 10.1007/s40314-018-0705-4 |
[31] | W. Z. Bao, J. Yin, A fourth-order compact time-splitting Fourier pseudospectral method for the Dirac equation, Res. Math. Sci., 6 (2019), 1–35. https://doi.org/10.1007/s40687-018-0173-x doi: 10.1007/s40687-018-0173-x |
[32] | S. C. Li, X. G. Li, High-order conservative schemes for the nonlinear Dirac equation, Int. J. Comput. Math., 97 (2020), 2355–2374. https://doi.org/10.1080/00207160.2019.1698735 doi: 10.1080/00207160.2019.1698735 |
[33] | C. L. Jiang, Y. S. Wang, W. J. Cai, A linearly implicit energy-preserving exponential integrator for the nonlinear Klein-Gordon equation, J. Comput. Phys., 419 (2020), 109690. https://doi.org/10.1016/j.jcp.2020.109690 doi: 10.1016/j.jcp.2020.109690 |