Research article Special Issues

Model-free based control of a HIV/AIDS prevention model


  • Received: 14 September 2021 Accepted: 02 November 2021 Published: 22 November 2021
  • Controlling an epidemiological model is often performed using optimal control theory techniques for which the solution depends on the equations of the controlled system, objective functional and possible state and/or control constraints. In this paper, we propose a model-free control approach based on an algorithm that operates in 'real-time' and drives the state solution according to a direct feedback on the state solution that is aimed to be minimized, and without knowing explicitly the equations of the controlled system. We consider a concrete epidemic problem of minimizing the number of HIV infected individuals, through the preventive measure pre-exposure prophylaxis (PrEP) given to susceptible individuals. The solutions must satisfy control and mixed state-control constraints that represent the limitations on PrEP implementation. Our model-free based control algorithm allows to close the loop between the number of infected individuals with HIV and the supply of PrEP medication 'in real time', in such a manner that the number of infected individuals is asymptotically reduced and the number of individuals under PrEP medication remains below a fixed constant value. We prove the efficiency of our approach and compare the model-free control solutions with the ones obtained using a classical optimal control approach via Pontryagin maximum principle. The performed numerical simulations allow us to conclude that the model-free based control strategy highlights new and interesting performances compared with the classical optimal control approach.

    Citation: Loïc Michel, Cristiana J. Silva, Delfim F. M. Torres. Model-free based control of a HIV/AIDS prevention model[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 759-774. doi: 10.3934/mbe.2022034

    Related Papers:

  • Controlling an epidemiological model is often performed using optimal control theory techniques for which the solution depends on the equations of the controlled system, objective functional and possible state and/or control constraints. In this paper, we propose a model-free control approach based on an algorithm that operates in 'real-time' and drives the state solution according to a direct feedback on the state solution that is aimed to be minimized, and without knowing explicitly the equations of the controlled system. We consider a concrete epidemic problem of minimizing the number of HIV infected individuals, through the preventive measure pre-exposure prophylaxis (PrEP) given to susceptible individuals. The solutions must satisfy control and mixed state-control constraints that represent the limitations on PrEP implementation. Our model-free based control algorithm allows to close the loop between the number of infected individuals with HIV and the supply of PrEP medication 'in real time', in such a manner that the number of infected individuals is asymptotically reduced and the number of individuals under PrEP medication remains below a fixed constant value. We prove the efficiency of our approach and compare the model-free control solutions with the ones obtained using a classical optimal control approach via Pontryagin maximum principle. The performed numerical simulations allow us to conclude that the model-free based control strategy highlights new and interesting performances compared with the classical optimal control approach.



    加载中


    [1] C. J. Silva, D. F. M. Torres, A TB-HIV/AIDS coinfection model and optimal control treatment, Discrete Contin. Dyn. Syst., 35 (2015), 4639–4663. doi: 10.3934/dcds.2015.35.4639. doi: 10.3934/dcds.2015.35.4639
    [2] J. Djordjevic, C. J. Silva, D. F. M. Torres, A stochastic SICA epidemic model for HIV transmission, Appl. Math. Lett., 84 (2018), 168–175. doi: 10.1016/j.aml.2018.05.005. doi: 10.1016/j.aml.2018.05.005
    [3] X. Wang, C. Wang, K. Wang, Extinction and persistence of a stochastic SICA epidemic model with standard incidence rate for HIV transmission, Adv. Differ. Equations, 2021 (2021). doi: 10.1186/s13662-021-03392-y. doi: 10.1186/s13662-021-03392-y
    [4] C. J. Silva, D. F. M. Torres, Stability of a fractional HIV/AIDS model, Math. Comput. Simul., 164 (2019), 180–190. doi: 10.1016/j.matcom.2019.03.016. doi: 10.1016/j.matcom.2019.03.016
    [5] M. Z. Ullah, D. Baleanu, A new fractional SICA model and numerical method for the transmission of HIV/AIDS, Math. Methods Appl. Sci., 44 (2021), 8648–8659. doi: 10.1002/mma.7292. doi: 10.1002/mma.7292
    [6] S. Vaz, D. F. M. Torres, A dynamically-consistent nonstandard finite difference scheme for the SICA model, Math. Biosci. Eng., 18 (2021), 4552–4571. doi: 10.3934/mbe.2021231. doi: 10.3934/mbe.2021231
    [7] C. J. Silva, D. F. M. Torres, A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde, Ecol. Complexity, 30 (2017), 70–75. doi: 10.1016/j.ecocom.2016.12.001. doi: 10.1016/j.ecocom.2016.12.001
    [8] C. J. Silva, D. F. M. Torres, Modeling and optimal control of HIV/AIDS prevention through PrEP, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 119–141. doi: 10.3934/dcdss.2018008. doi: 10.3934/dcdss.2018008
    [9] E. M. Lotfi, M. Mahrouf, M. Maziane, C. J. Silva, D. F. M. Torres, N. Yousfi, A minimal HIV-AIDS infection model with general incidence rate and application to Morocco data, Stat. Optim. Inf. Comput., 7 (2019), 588–603. doi: 10.19139/soic.v7i3.834. doi: 10.19139/soic.v7i3.834
    [10] C. J. Silva, D. F. M. Torres, On SICA models for HIV transmission, in Mathematical Modelling and Analysis of Infectious Diseases, Studies in Systems, Decision and Control, 302 (2020), 155–179. doi: 10.1007/978-3-030-49896-2_6.
    [11] Centers for Disease Control and Prevention, Pre-Exposure Prophylaxis (PrEP), 2021. Available from: https://www.cdc.gov/hiv/risk/prep/index.html.
    [12] M. Fliess, C. Join, Model-free control, Int. J. Control, 86 (2013), 2228–2252. doi: 10.1080/00207179.2013.810345. doi: 10.1080/00207179.2013.810345
    [13] K. J. Aström, P. R. Kumar, Control: a perspective, Automatica, 50 (2014), 3–43. doi: 10.1016/j.automatica.2013.10.012. doi: 10.1016/j.automatica.2013.10.012
    [14] M. Fliess, C. Join, An alternative to PIs and PIDs: intelligent proportional-derivative regulators, Int. J. Robust Nonlin., (2021). doi: 10.1002/rnc.5657. doi: 10.1002/rnc.5657
    [15] O. Bara, M. Fliess, C. Join, J. Day, S. M. Djouadi, Toward a model-free feedback control synthesis for treating acute inflammation, J. Theor. Biol., 448 (2018), 26–37. doi: 10.1016/j.jtbi.2018.04.003. doi: 10.1016/j.jtbi.2018.04.003
    [16] K. Hamiche, M. Fliess, C. Join, H. Abouaïssa, Bullwhip effect attenuation in supply chain management via control-theoretic tools and short-term forecasts: a preliminary study with an application to perishable inventories, in 6th International Conference on Control, Decision and Information Technologies (CoDIT), (2019), 1492–1497. doi: 10.1109/CoDIT.2019.8820297.
    [17] O. Bara, M. Fliess, C. Join, J. Day, S. Djouadi, Model-free immune therapy: a control approach to acute inflammation, in 15th European Control Conference (ECC), 2016. arXiv: 1607.07259.
    [18] C. Join, J. Bernier, S. Mottelet, M. Fliess, S. Rechdaoui-Guérin, S. Azimi, et al., A simple and efficient feedback control strategy for wastewater denitrification, IFAC-PapersOnLine, 50 (2017), 7657–7662. doi: 10.1016/j.ifacol.2017.08.1167. doi: 10.1016/j.ifacol.2017.08.1167
    [19] T. MohammadRidha, C. Moog, E. Delaleau, M. Fliess, C. Join, A variable reference trajectory for model-free glycemia regulation, in SIAM Conference on Control & its Applications (SIAM CT15), (2015). doi: 10.1137/1.9781611974072.9.
    [20] S. Tebbani, M. Titica, C. Join, M. Fliess, D. Dumur, Model-based versus model-free control designs for improving microalgae growth in a closed photobioreactor: some preliminary comparaisons, in 24th Mediterranean Conference on Control and Automation (MED), IEEE, (2016), 683–688. doi: 10.1109/MED.2016.7535870.
    [21] T. MohammadRidha, M. Aït-Ahmed, L. Chaillous, M. Krempf, I. Guilhem, J. Y. Poirier, et al., Model free iPID control for glycemia regulation of type-1 diabetes, IEEE Trans. Biomed. Eng., 65 (2018), 199–206. doi: 10.1109/TBME.2017.2698036. doi: 10.1109/TBME.2017.2698036
    [22] L. Michel, A para-model agent for dynamical systems, preprint, 2018. arXiv: 1202.4707.
    [23] M. Fliess, C. Join, Commande sans modèle et commande à modèle restreint, in e-STA Sciences et Technologies de l'Automatique, SEE-Société de l'Electricité, de l'Electronique et des Technologies de l'Information et de la Communication, 5 (2008), 1–23. Available from: https://hal.inria.fr/inria-00288107v3/document.
    [24] M. Fliess, C. Join, Model-free control and intelligent PID controllers: towards a possible trivialization of nonlinear control? IFAC Proc. Vol., 42 (2009), 1531–1550. doi: 10.3182/20090706-3-FR-2004.00256. doi: 10.3182/20090706-3-FR-2004.00256
    [25] T. P. Nascimento, M. Saska, Position and attitude control of multi-rotor aerial vehicles: a survey, Annu. Rev. Control, 48 (2019), 129–146. doi: 10.1016/j.arcontrol.2019.08.004. doi: 10.1016/j.arcontrol.2019.08.004
    [26] M. Porcelli, P. L. Toint, BFO, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables, ACM Trans. Math. Software, 44 (2017), 1–25. doi: 10.1145/3085592. doi: 10.1145/3085592
    [27] D. P. Wilson, M. G. Law, A. E. Grulich, D. A. Cooper, J. M. Kaldor, Relation between HIV viral load and infectiousness: a model-based analysis, Lancet, 372 (2008), 314–320. doi: 10.1016/S0140-6736(08)61115-0. doi: 10.1016/S0140-6736(08)61115-0
    [28] S. G. Deeks, S. R. Lewin, D. V. Havlir, The end of AIDS: HIV infection as a chronic disease, Lancet, 382 (2013), 1525–1533. doi: 10.1016/S0140-6736(13)61809-7. doi: 10.1016/S0140-6736(13)61809-7
    [29] M. Fazlyab, A. Ribeiro, M. Morari, V. M. Preciado, Analysis of optimization algorithms via integral quadratic constraints: nonstrongly convex problems, SIAM J. Optim., 28 (2018), 2654–2689. doi: 10.1137/17M1136845. doi: 10.1137/17M1136845
    [30] J. M. Sanz-Serna, K. C. Zygalakis, The connections between Lyapunov functions for some optimization algorithms and differential equations, SIAM J. Numer. Anal., 59 (2021), 1542–1565. doi: 10.1137/20M1364138. doi: 10.1137/20M1364138
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2107) PDF downloads(95) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog