This paper investigates the finite-time relative position coordinated control problem of distributed spacecraft formation without velocity information over limited communication bandwidth. In this design, a dynamic event triggered transmission scheme among spacecraft is designed to reduce communication burden, and a finite-time extended state observer is proposed to estimate the velocity information and the effects of non-linearity and disturbance of each spacecraft. A fast terminal sliding mode control law is developed to achieve finite-time coordination of the overall spacecraft formation. Finally, a numerical simulation is presented to demonstrate the effectiveness of the proposed control strategy.
Citation: Jiao Wu, Shi Qiu, Ming Liu, Huayi Li, Yuan Liu. Finite-time velocity-free relative position coordinated control of spacecraft formation with dynamic event triggered transmission[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6883-6906. doi: 10.3934/mbe.2022324
This paper investigates the finite-time relative position coordinated control problem of distributed spacecraft formation without velocity information over limited communication bandwidth. In this design, a dynamic event triggered transmission scheme among spacecraft is designed to reduce communication burden, and a finite-time extended state observer is proposed to estimate the velocity information and the effects of non-linearity and disturbance of each spacecraft. A fast terminal sliding mode control law is developed to achieve finite-time coordination of the overall spacecraft formation. Finally, a numerical simulation is presented to demonstrate the effectiveness of the proposed control strategy.
[1] | R. Kristiansen, P. J. Nicklasson, Spacecraft formation flying: A review and new results on state feedback control, Acta Astronaut., 65 (2009), 1537–1552. https://doi.org/10.1016/j.actaastro.2009.04.014 doi: 10.1016/j.actaastro.2009.04.014 |
[2] | S. Bandyopadhyay, R. Foust, G. P. Subramanian, S. J. Chung, F. Y. Hadaegh, Review of formation flying and constellation missions using nanosatellites, J. Spacecr. Rockets, 53 (2016), 567–578. https://doi.org/10.2514/1.A33291 doi: 10.2514/1.A33291 |
[3] | D. Ye, M. Shi, Z. Sun, Satellite proximate pursuit-evasion game with different thrust configurations, Aerosp. Sci. Technol., 99 (2020), 105715. https://doi.org/10.1016/j.ast.2020.105715 doi: 10.1016/j.ast.2020.105715 |
[4] | D. P. Scharf, F. Y. Hadaegh, S. R. Ploen, A survey of spacecraft formation flying guidance and control. part ii: Control, in Proceedings of the 2004 American control conference, 4 (2004), 2976–2985. https://doi.org/10.23919/ACC.2004.1384365 |
[5] | Y. Sun, D. Dong, H. Qin, N. Wang, X. Li, Distributed coordinated tracking control for multiple uncertain Euler-Lagrange systems with time-varying communication delays, IEEE Access, 7 (2019), 12598–12609. https://doi.org/10.1109/ACCESS.2019.2893261 doi: 10.1109/ACCESS.2019.2893261 |
[6] | J. R. Carpenter, Decentralized control of satellite formations, Int. J. Robust Nonlinear Control: IFAC-Affiliated J., 12 (2002), 141–161. https://doi.org/10.1002/rnc.680 doi: 10.1002/rnc.680 |
[7] | M. C. VanDyke, C. D. Hall, Decentralized coordinated attitude control within a formation of spacecraft, J. Guid., Control, Dyn., 29 (2006), 1101–1109. https://doi.org/10.2514/1.17857 doi: 10.2514/1.17857 |
[8] | W. Ren, R. W. Beard, Decentralized scheme for spacecraft formation flying via the virtual structure approach, J. Guid., Control, Dyn., 27 (2004), 73–82. https://doi.org/10.2514/1.9287 doi: 10.2514/1.9287 |
[9] | W. Ren, Formation keeping and attitude alignment for multiple spacecraft through local interactions, J. Guid., Control, Dyn., 30 (2007), 633–638. https://doi.org/10.2514/1.25629 doi: 10.2514/1.25629 |
[10] | B. Q. Zhang, S. M. Song, Decentralized coordinated control for multiple spacecraft formation maneuvers, Acta Astronaut., 74 (2012), 79–97. https://doi.org/10.1016/j.actaastro.2011.12.017 doi: 10.1016/j.actaastro.2011.12.017 |
[11] | Z. Zheng, S. Song, Autonomous attitude coordinated control for spacecraft formation with input constraint, model uncertainties, and external disturbances, Chin. J. Aeronaut., 27 (2014), 602–612. https://doi.org/10.1016/j.cja.2014.04.02 doi: 10.1016/j.cja.2014.04.02 |
[12] | Q. Hu, J. Zhang, Relative position finite-time coordinated tracking control of spacecraft formation without velocity measurements, ISA Trans., 54 (2015), 60–74. https://doi.org/10.1016/j.isatra.2014.08.004 doi: 10.1016/j.isatra.2014.08.004 |
[13] | D. Lee, A. K. Sanyal, E. A. Butcher, Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance, J. Guid., Control, Dyn., 38 (2015), 587–600. https://doi.org/10.2514/1.G000101 doi: 10.2514/1.G000101 |
[14] | G. M. Belanger, S. Ananyev, J. L. Speyer, D. F. Chichka, J. R. Carpenter, Decentralized control of satellite clusters under limited communication, J. Guid., Control, Dyn., 29 (2006), 134–145. https://doi.org/10.2514/1.13233 doi: 10.2514/1.13233 |
[15] | C. Xu, B. L. Wu, X. B. Cao, Y. C. Zhang, Distributed adaptive event-triggered control for attitude synchronization of multiple spacecraft, Nonlinear Dyn., 95 (2019), 2625–2638. https://doi.org/10.1007/s11071-018-4706-z doi: 10.1007/s11071-018-4706-z |
[16] | L. Zhang, Z. Zhang, N. Lawrance, J. Nieto, R. Siegwart, Decentralised finite-time consensus for second-order multi-agent system under event-triggered strategy, IET Control Theory Appl., 14 (2020), 664–673. https://doi.org/10.1049/iet-cta.2019.0865 doi: 10.1049/iet-cta.2019.0865 |
[17] | R. Fan, X. Chen, M. Liu, X. Cao, Attitude-orbit coupled sliding mode tracking control for spacecraft formation with event-triggered transmission, ISA Trans., 2020. https://doi.org/10.1016/j.isatra.2020.10.062 |
[18] | Q. Hu, Y. Shi, Event-based coordinated control of spacecraft formation flying under limited communication, Nonlinear Dyn., 99 (2020), 2139–2159. https://doi.org/10.1007/s11071-019-05396-6 doi: 10.1007/s11071-019-05396-6 |
[19] | B. Wu, Q. Shen, X. Cao, Event-triggered attitude control of spacecraft, Adv. Space Res., 61 (2018), 927–934. https://doi.org/10.1016/j.asr.2017.11.013 doi: 10.1016/j.asr.2017.11.013 |
[20] | K. J. Åström, B. Bernhardsson, Comparison of periodic and event based sampling for first-order stochastic systems, IFAC Proc. Vol., 32 (1999), 5006–5011. https://doi.org/10.1016/S1474-6670(17)56852-4 doi: 10.1016/S1474-6670(17)56852-4 |
[21] | D. Yang, X. Gao, L. Kong, Y. Pang, B. Zhou, An event-driven convolutional neural architecture for non-intrusive load monitoring of residential appliance, IEEE Trans. Consum. Electron., 66 (2020), 173–182. https://doi.org/10.1109/TCE.2020.2977964 doi: 10.1109/TCE.2020.2977964 |
[22] | X. Ge, Q. L. Han, L. Ding, Y. L. Wang, X. M. Zhang, Dynamic event-triggered distributed coordination control and its applications: A survey of trends and techniques, IEEE Trans. Syst. Man Cybern.: Syst., 50 (2020), 3112–3125. https://doi.org/10.1109/TSMC.2020.3010825 doi: 10.1109/TSMC.2020.3010825 |
[23] | N. Wang, S. F. Su, Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles, IEEE Trans. Control Syst. Technol., (2019), 1–10. https://doi.org/10.1109/TCST.2019.2955657 |
[24] | D. Ye, A. M. Zou, Z. Sun, Predefined-time predefined-bounded attitude tracking control for rigid spacecraft, IEEE Trans. Aerosp. Electron. Syst., 2021. https://doi.org/10.1109/TAES.2021.3103258 |
[25] | J. A. Fax, R. M. Murray, Information flow and cooperative control of vehicle formations, IEEE Trans. Aerosp. Electron. Syst., 49 (2004), 1465–1476. https://doi.org/10.1109/TAC.2004.834433 doi: 10.1109/TAC.2004.834433 |
[26] | A. Zhang, D. Zhou, P. Yang, M. Yang, Event-triggered finite-time consensus with fully continuous communication free for second-order multi-agent systems, Int. J. Control, Autom. Syst., 17 (2019), 836–846. https://doi.org/10.1007/s12555-018-0666-9 doi: 10.1007/s12555-018-0666-9 |