Research article Special Issues

Finite-time velocity-free relative position coordinated control of spacecraft formation with dynamic event triggered transmission


  • Received: 28 February 2022 Revised: 11 April 2022 Accepted: 14 April 2022 Published: 07 May 2022
  • This paper investigates the finite-time relative position coordinated control problem of distributed spacecraft formation without velocity information over limited communication bandwidth. In this design, a dynamic event triggered transmission scheme among spacecraft is designed to reduce communication burden, and a finite-time extended state observer is proposed to estimate the velocity information and the effects of non-linearity and disturbance of each spacecraft. A fast terminal sliding mode control law is developed to achieve finite-time coordination of the overall spacecraft formation. Finally, a numerical simulation is presented to demonstrate the effectiveness of the proposed control strategy.

    Citation: Jiao Wu, Shi Qiu, Ming Liu, Huayi Li, Yuan Liu. Finite-time velocity-free relative position coordinated control of spacecraft formation with dynamic event triggered transmission[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6883-6906. doi: 10.3934/mbe.2022324

    Related Papers:

  • This paper investigates the finite-time relative position coordinated control problem of distributed spacecraft formation without velocity information over limited communication bandwidth. In this design, a dynamic event triggered transmission scheme among spacecraft is designed to reduce communication burden, and a finite-time extended state observer is proposed to estimate the velocity information and the effects of non-linearity and disturbance of each spacecraft. A fast terminal sliding mode control law is developed to achieve finite-time coordination of the overall spacecraft formation. Finally, a numerical simulation is presented to demonstrate the effectiveness of the proposed control strategy.



    加载中


    [1] R. Kristiansen, P. J. Nicklasson, Spacecraft formation flying: A review and new results on state feedback control, Acta Astronaut., 65 (2009), 1537–1552. https://doi.org/10.1016/j.actaastro.2009.04.014 doi: 10.1016/j.actaastro.2009.04.014
    [2] S. Bandyopadhyay, R. Foust, G. P. Subramanian, S. J. Chung, F. Y. Hadaegh, Review of formation flying and constellation missions using nanosatellites, J. Spacecr. Rockets, 53 (2016), 567–578. https://doi.org/10.2514/1.A33291 doi: 10.2514/1.A33291
    [3] D. Ye, M. Shi, Z. Sun, Satellite proximate pursuit-evasion game with different thrust configurations, Aerosp. Sci. Technol., 99 (2020), 105715. https://doi.org/10.1016/j.ast.2020.105715 doi: 10.1016/j.ast.2020.105715
    [4] D. P. Scharf, F. Y. Hadaegh, S. R. Ploen, A survey of spacecraft formation flying guidance and control. part ii: Control, in Proceedings of the 2004 American control conference, 4 (2004), 2976–2985. https://doi.org/10.23919/ACC.2004.1384365
    [5] Y. Sun, D. Dong, H. Qin, N. Wang, X. Li, Distributed coordinated tracking control for multiple uncertain Euler-Lagrange systems with time-varying communication delays, IEEE Access, 7 (2019), 12598–12609. https://doi.org/10.1109/ACCESS.2019.2893261 doi: 10.1109/ACCESS.2019.2893261
    [6] J. R. Carpenter, Decentralized control of satellite formations, Int. J. Robust Nonlinear Control: IFAC-Affiliated J., 12 (2002), 141–161. https://doi.org/10.1002/rnc.680 doi: 10.1002/rnc.680
    [7] M. C. VanDyke, C. D. Hall, Decentralized coordinated attitude control within a formation of spacecraft, J. Guid., Control, Dyn., 29 (2006), 1101–1109. https://doi.org/10.2514/1.17857 doi: 10.2514/1.17857
    [8] W. Ren, R. W. Beard, Decentralized scheme for spacecraft formation flying via the virtual structure approach, J. Guid., Control, Dyn., 27 (2004), 73–82. https://doi.org/10.2514/1.9287 doi: 10.2514/1.9287
    [9] W. Ren, Formation keeping and attitude alignment for multiple spacecraft through local interactions, J. Guid., Control, Dyn., 30 (2007), 633–638. https://doi.org/10.2514/1.25629 doi: 10.2514/1.25629
    [10] B. Q. Zhang, S. M. Song, Decentralized coordinated control for multiple spacecraft formation maneuvers, Acta Astronaut., 74 (2012), 79–97. https://doi.org/10.1016/j.actaastro.2011.12.017 doi: 10.1016/j.actaastro.2011.12.017
    [11] Z. Zheng, S. Song, Autonomous attitude coordinated control for spacecraft formation with input constraint, model uncertainties, and external disturbances, Chin. J. Aeronaut., 27 (2014), 602–612. https://doi.org/10.1016/j.cja.2014.04.02 doi: 10.1016/j.cja.2014.04.02
    [12] Q. Hu, J. Zhang, Relative position finite-time coordinated tracking control of spacecraft formation without velocity measurements, ISA Trans., 54 (2015), 60–74. https://doi.org/10.1016/j.isatra.2014.08.004 doi: 10.1016/j.isatra.2014.08.004
    [13] D. Lee, A. K. Sanyal, E. A. Butcher, Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance, J. Guid., Control, Dyn., 38 (2015), 587–600. https://doi.org/10.2514/1.G000101 doi: 10.2514/1.G000101
    [14] G. M. Belanger, S. Ananyev, J. L. Speyer, D. F. Chichka, J. R. Carpenter, Decentralized control of satellite clusters under limited communication, J. Guid., Control, Dyn., 29 (2006), 134–145. https://doi.org/10.2514/1.13233 doi: 10.2514/1.13233
    [15] C. Xu, B. L. Wu, X. B. Cao, Y. C. Zhang, Distributed adaptive event-triggered control for attitude synchronization of multiple spacecraft, Nonlinear Dyn., 95 (2019), 2625–2638. https://doi.org/10.1007/s11071-018-4706-z doi: 10.1007/s11071-018-4706-z
    [16] L. Zhang, Z. Zhang, N. Lawrance, J. Nieto, R. Siegwart, Decentralised finite-time consensus for second-order multi-agent system under event-triggered strategy, IET Control Theory Appl., 14 (2020), 664–673. https://doi.org/10.1049/iet-cta.2019.0865 doi: 10.1049/iet-cta.2019.0865
    [17] R. Fan, X. Chen, M. Liu, X. Cao, Attitude-orbit coupled sliding mode tracking control for spacecraft formation with event-triggered transmission, ISA Trans., 2020. https://doi.org/10.1016/j.isatra.2020.10.062
    [18] Q. Hu, Y. Shi, Event-based coordinated control of spacecraft formation flying under limited communication, Nonlinear Dyn., 99 (2020), 2139–2159. https://doi.org/10.1007/s11071-019-05396-6 doi: 10.1007/s11071-019-05396-6
    [19] B. Wu, Q. Shen, X. Cao, Event-triggered attitude control of spacecraft, Adv. Space Res., 61 (2018), 927–934. https://doi.org/10.1016/j.asr.2017.11.013 doi: 10.1016/j.asr.2017.11.013
    [20] K. J. Åström, B. Bernhardsson, Comparison of periodic and event based sampling for first-order stochastic systems, IFAC Proc. Vol., 32 (1999), 5006–5011. https://doi.org/10.1016/S1474-6670(17)56852-4 doi: 10.1016/S1474-6670(17)56852-4
    [21] D. Yang, X. Gao, L. Kong, Y. Pang, B. Zhou, An event-driven convolutional neural architecture for non-intrusive load monitoring of residential appliance, IEEE Trans. Consum. Electron., 66 (2020), 173–182. https://doi.org/10.1109/TCE.2020.2977964 doi: 10.1109/TCE.2020.2977964
    [22] X. Ge, Q. L. Han, L. Ding, Y. L. Wang, X. M. Zhang, Dynamic event-triggered distributed coordination control and its applications: A survey of trends and techniques, IEEE Trans. Syst. Man Cybern.: Syst., 50 (2020), 3112–3125. https://doi.org/10.1109/TSMC.2020.3010825 doi: 10.1109/TSMC.2020.3010825
    [23] N. Wang, S. F. Su, Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles, IEEE Trans. Control Syst. Technol., (2019), 1–10. https://doi.org/10.1109/TCST.2019.2955657
    [24] D. Ye, A. M. Zou, Z. Sun, Predefined-time predefined-bounded attitude tracking control for rigid spacecraft, IEEE Trans. Aerosp. Electron. Syst., 2021. https://doi.org/10.1109/TAES.2021.3103258
    [25] J. A. Fax, R. M. Murray, Information flow and cooperative control of vehicle formations, IEEE Trans. Aerosp. Electron. Syst., 49 (2004), 1465–1476. https://doi.org/10.1109/TAC.2004.834433 doi: 10.1109/TAC.2004.834433
    [26] A. Zhang, D. Zhou, P. Yang, M. Yang, Event-triggered finite-time consensus with fully continuous communication free for second-order multi-agent systems, Int. J. Control, Autom. Syst., 17 (2019), 836–846. https://doi.org/10.1007/s12555-018-0666-9 doi: 10.1007/s12555-018-0666-9
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1876) PDF downloads(150) Cited by(2)

Article outline

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog