In this paper, the prescribed-time stabilization is studied for stochastic high-order nonlinear systems. Different from the previous research results on stochastic high-order nonlinear systems where only asymptotic stabilization or finite-time stabilization is considered, this paper proposes a new design to achieve stabilization in the prescribed-time. Specifically, the designed controller can ensure that the closed-loop system has an almost surely unique strong solution and the equilibrium of the closed-loop system is prescribed-time mean-square stable. The design method is verified by an example.
Citation: Hui Wang. Prescribed-time control of stochastic high-order nonlinear systems[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11399-11408. doi: 10.3934/mbe.2022531
In this paper, the prescribed-time stabilization is studied for stochastic high-order nonlinear systems. Different from the previous research results on stochastic high-order nonlinear systems where only asymptotic stabilization or finite-time stabilization is considered, this paper proposes a new design to achieve stabilization in the prescribed-time. Specifically, the designed controller can ensure that the closed-loop system has an almost surely unique strong solution and the equilibrium of the closed-loop system is prescribed-time mean-square stable. The design method is verified by an example.
[1] | Z. G. Pan, T. Basar, Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems, IEEE Trans. Autom. Control, 43 (1998), 1066–1083. https://doi.org/10.1109/9.704978 doi: 10.1109/9.704978 |
[2] | Z. G. Pan, T. Basar, Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion, SIAM J. Control Optim., 37 (1999), 957–995. https://doi.org/10.1137/S0363012996307059 doi: 10.1137/S0363012996307059 |
[3] | Z. G. Pan, Y. Liu, S. Shi, Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zero-dynamics, Sci. China, 44 (2001), 292–308. https://doi.org/10.1007/BF02714717 doi: 10.1007/BF02714717 |
[4] | H. Deng, M. Krsti$\acute{c}$, Stochastic nonlinear stabilization, part i: a backstepping design, Syst. Control Lett., 32 (1997), 143–150. https://doi.org/10.1016/S0167-6911(97)00068-6 doi: 10.1016/S0167-6911(97)00068-6 |
[5] | H. Deng, M. Krsti$\acute{c}$, Output-feedback stochastic nonlinear stabilization, IEEE Trans. Autom. Control, 44 (1999), 328–333. https://doi.org/10.1109/9.746260 doi: 10.1109/9.746260 |
[6] | H. Deng, M. Krsti$\acute{c}$, Output-feedback stabilization of stochastic nonlinear systems driven by noise of unknown covariance, Syst. Control Lett., 39 (2000), 173–182. https://doi.org/10.1016/S0167-6911(99)00084-5 doi: 10.1016/S0167-6911(99)00084-5 |
[7] | H. Deng, M. Krsti$\acute{c}$, R. J. Williams, Stabilization of stochastic nonlinear driven by noise of unknown covariance, IEEE Trans. Autom. Control, 46 (2001), 1237–1253. https://doi.org/10.1109/9.940927 doi: 10.1109/9.940927 |
[8] | M. Krsti$\acute{c}$, H. Deng, Stabilization of Uncertain Nonlinear Systems, Springer, New York, 1998. |
[9] | W. Q. Li, L. Liu, G. Feng, Cooperative control of multiple nonlinear benchmark systems perturbed by second-order moment processes, IEEE Trans. Cybern., 50 (2020), 902–910. https://doi.org/10.1109/TCYB.2018.2869385 doi: 10.1109/TCYB.2018.2869385 |
[10] | W. Q. Li, M. Krsti$\acute{c}$, Stochastic adaptive nonlinear control with filterless least-squares, IEEE Trans. Autom. Control, 66 (2021), 3893–3905. https://doi.org/10.1109/TAC.2020.3027650 doi: 10.1109/TAC.2020.3027650 |
[11] | W. Q. Li, X. X. Yao, M. Krsti$\acute{c}$, Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty, Automatica, 120 (2020), 109112. https://doi.org/10.1016/j.automatica.2020.109112 doi: 10.1016/j.automatica.2020.109112 |
[12] | W. Q. Li, M. Krsti$\acute{c}$, Mean-nonovershooting control of stochastic nonlinear systems, IEEE Trans. Autom. Control, 66 (2021), 5756–5771. https://doi.org/10.1109/TAC.2020.3042454 doi: 10.1109/TAC.2020.3042454 |
[13] | X. J. Xie, N. Duan, Output tracking of high-order stochastic nonlinear systems with application to benchmark mechanical system, IEEE Trans. Autom. Control, 55 (2010), 1197–1202. https://doi.org/10.1109/TAC.2010.2043004 doi: 10.1109/TAC.2010.2043004 |
[14] | X. J. Xie, J. Tian, State-feedback stabilization for high-order stochastic nonlinear systems with stochastic inverse dynamics, Int. J. Robust Nonlinear, 17 (2007), 1343–1362. https://doi.org/10.1002/rnc.1177 doi: 10.1002/rnc.1177 |
[15] | W. Q. Li, X. J. Xie, S. Y. Zhang, Output-feedback stabilization of stochastic high-order nonlinear systems under weaker conditions, SIAM J. Control Optim., 49 (2011), 1262–1282. https://doi.org/10.1137/100798259 doi: 10.1137/100798259 |
[16] | W. Q. Li, L. Liu, G. Feng, Output tracking of stochastic nonlinear systems with unstable linearization, Int. J. Robust Nonlinear, 28 (2018), 466–477. https://doi.org/10.1002/rnc.3877 doi: 10.1002/rnc.3877 |
[17] | R. H. Cui, X. J. Xie, Adaptive state-feedback stabilization of state-constrained stochastic high-order nonlinear systems, Sci. China Inf. Sci., 64 (2021), 200203. https://linkspringer.53yu.com/article/10.1007/s11432-021-3293-0 |
[18] | Y. D. Song, Y. J. Wang, J. C. Holloway, M. Krsti$\acute{c}$, Time-varying feedback for robust regulation of normal-form nonlinear systems in prescribed finite time, Automatica, 83 (2017), 243–251. https://doi.org/10.1016/j.automatica.2017.06.008 doi: 10.1016/j.automatica.2017.06.008 |
[19] | Y. D. Song, Y. J. Wang, M. Krsti$\acute{c}$, Time-varying feedback for stabilization in prescribed finite time, Int. J. Robust Nonlinear, 29 (2019), 618–633. https://doi.org/10.1002/rnc.4084 doi: 10.1002/rnc.4084 |
[20] | Y. J. Wang, Y. D. Song, D. J. Hill, M. Krsti$\acute{c}$, Prescribed finite time consensus and containment control of networked multi-agent systems, IEEE Trans. Cybern., 49 (2019), 1138–1147. https://doi.org/10.1109/TCYB.2017.2788874 doi: 10.1109/TCYB.2017.2788874 |
[21] | J. Holloway, M. Krsti$\acute{c}$, Prescribed-time observers for linear systems in observer canonical form, IEEE Trans. Autom. Control, 64 (2019), 3905–3912. https://doi.org/10.1109/TAC.2018.2890751 doi: 10.1109/TAC.2018.2890751 |
[22] | J. Holloway, M. Krsti$\acute{c}$, Prescribed-time output feedback for linear systems in controllable canonical form, Automatica, 107 (2019), 77–85. https://doi.org/10.1016/j.automatica.2019.05.027 doi: 10.1016/j.automatica.2019.05.027 |
[23] | P. Krishnamurthy, F. Khorrami, M. Krsti$\acute{c}$, Robust adaptive prescribed-time stabilization via output feedback for uncertain nonlinear strict-feedback-like systems, Eur. J. Control, 55 (2020), 14–23. https://doi.org/10.1016/j.ejcon.2019.09.005 doi: 10.1016/j.ejcon.2019.09.005 |
[24] | W. Q. Li, M. Krsti$\acute{c}$, Stochastic nonlinear prescribed-time stabilization and inverse optimality, IEEE Trans. Autom. Contr., 67 (2022), 1179–1193. https://doi.org/10.1109/TAC.2021.3061646 doi: 10.1109/TAC.2021.3061646 |
[25] | W. Q. Li, M. Krsti$\acute{c}$, Prescribed-time control of stochastic nonlinear systems with reduced control effort, J. Syst. Sci. Complex., 34 (2021), 1782–1800. https://doi.org/10.1007/s11424-021-1217-7 doi: 10.1007/s11424-021-1217-7 |
[26] | W. Q. Li, M. Krsti$\acute{c}$, Prescribed-time output-feedback control of stochastic nonlinear systems, IEEE Trans. Autom. Control, 68 (2023). https://doi.org/10.1109/TAC.2022.3151587 doi: 10.1109/TAC.2022.3151587 |
[27] | W. Q. Li, L. Liu, G. Feng, Distributed output-feedback tracking of multiple nonlinear systems with unmeasurable states, IEEE Trans. Syst. Man Cybern., 51 (2021), 477–486. https://doi.org/10.1109/TSMC.2018.2875453 doi: 10.1109/TSMC.2018.2875453 |
[28] | X. D. Li, D. W. Ho, J. D. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024 |
[29] | X. D. Li, S. J. Song, J. H. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271 |
[30] | X. D. Li, D. X. Peng, J. D. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558 |
[31] | R. H. Cui, X. J. Xie, Finite-time stabilization of output-constrained stochastic high-order nonlinear systems with high-order and low-order nonlinearities, Automatica, 136 (2022), 110085. https://doi.org/10.1016/j.automatica.2021.110085 doi: 10.1016/j.automatica.2021.110085 |
[32] | R. H. Cui, X. J. Xie, Finite-time stabilization of stochastic low-order nonlinear systems with time-varying orders and FT-SISS inverse dynamics, Automatica, 125 (2021), 109418. https://doi.org/10.1016/j.automatica.2020.109418 doi: 10.1016/j.automatica.2020.109418 |
[33] | R. H. Cui, X. J. Xie, Output feedback stabilization of stochastic planar nonlinear systems with output constraint, Automatica, 143 (2022), 110471. https://doi.org/10.1016/j.automatica.2022.110471 doi: 10.1016/j.automatica.2022.110471 |
[34] | R. H. Cui, X. J. Xie, Adaptive state-feedback stabilization of state-constrained stochastic high-order nonlinear systems, Sci. China Inf. Sci., 64 (2021), 1–11. https://doi.org/10.1007/s11432-021-3293-0 doi: 10.1007/s11432-021-3293-0 |